LECTURE 18

First Order Equations

ExaMpLE 18.1. Consider the following first order linear PDE

(18.1) bt 2y =y
subject to the boundary condition
(18.2) #(0,y) = 1 +y* , forl <y <2

Suppose that ¢(z,y) is a solution of this PDE/BVP. If we look along the curves of the form

(18.3) y= I()
we have
d

(18.9 Lo, f12)) = 62+ 1210,
Thus, if we evaluate (18.1) along the curve
(18.5) y=1a"+C
we get

d
(18.6) %qs(x,x%rcl) = ¢+ 200, =y =2+ C)

Integrating the extreme sides of (18.6) with respect to = we get
1
(18.7) qb(x,a:z—l—Cl) = gx?’—i—C’lx—l—C’z

The constants Cy and C3 can be interpreted as follows. The curve (18.5) is a parabola that intersects the
y-axis at the point Cy. From (18.7) it is clear that Cy corresponds to the value of ¢ at the point (0, CY).

Equation (18.7) now tells us that by choosing a parabolic curve (by choosing C1) and fixing the value Cy of
é(x,y) at the point where this parabola intersects the y-axis, we can obtain the values of ¢(z,y) at every
other point along the parabolic curve.

From (18.2), we know the values of ¢ at all the points along the y-axis between y = 1 and y = 2. Using
(18.7), we can thus compute the values of ¢ at all points in the region R of (x, y)-plane that is bounded by
the curves y = 22+ 1 and y = % + 2.

To see this more explicitly, let P = (21,y1) € R. Setting

(18.8) y1 = a7 + Oy
we see that the parabolic curve through P intersects the y-axis at the point
(189) 01 =Yy — l‘%

which we assume to lie between y = 1 and y = 2. According to (19.2), then the value of ¢ at the point
(0,y,) is

(18.10) Co=1+y2=1+(y —2?)
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Thus, equation (18.7) gives us
2
(18.11) ¢(z1,p1) =27+ (y1 —27) w1 + (1—1—(;{/1—1‘%) )
This procedure has uniquely determined ¢(z,y) in the region R, but has given us no information about ¢

outside the region R. In order to fix the functional form of ¢ outside of R, we could extend the boundary
condition so that

¢(0,y)=9gly) ., VYyeR
However, no matter how we extend the boundary conditions along the y-axis, as long as
9(y) = 1+y°

in the interval 1 < y < 2, the functional form of ¢(x, y) in the region R will not be affected.
ExaMPLE 18.2. Consider now the following PDE/BVP:

26 +ydy = 14y
(18.12) b(e,1) = w41
In this example, we could divide through by =z, to get
1+ y?
(18.13) bu + %qsy _ -y
and then try to construct solutions along curves y = f(x) with
(18.14) Flz)y=1Y
x

However, such a formulation would introduce singularities at = 0 which could be avoided.

So instead, consider a curve in the (z,y)-plane defined by some function v : R — R? ¢ — (2(t),y(t)). If

dx dy
18.1 - = - =
(18.15) T8 Y
then

d
(18.16) 59 (1)) = 2o +yoy

Thus, along the curve =, the PDE in (18.12) can be written

d 2

79 0@) =1+ ()"
Solving the differential equations (18.15) for #(¢) and y(t), we can make this equation for ¢ (y(t)) even more
explicit:

dx

T=F = z = Chet

d

d_i/ =y = y = Cae’
50

d 2
(18.17) T(609) =1+ (Coe')
Integrating (18.17) produces
1

(18.18) ¢ (Cre',Cac') =t + 5026” +C5

Without loss of generality, we can assume that the curve 7 crosses the line y = 1 when ¢t = 0. Then if the
curve ~ crosses the line y = 1 at the point z,, we would have

(1819) 01 =Xy ; Cz =1



18. FIRST ORDER EQUATIONS

Now consider an arbitrary point P = (21, 1) in the first quadrant. Suppose v passes through P, then

r = x.e
y = ¢

for some t. Solving (18.20) for z, and t we get

(18.20)

[
Lo =

In [y
xr

y

(18.21)

We are also given the boundary condition
(18.22) d(ro, 1) =a,+ 1
Evaluating (18.18) at t = 0 yields

1
l‘0+1:0—|———|—03 3

2
hence
1
(18.23) Ci==x,+ 5
Equations (18.19), (18.21), and (18.23), now enable us to rewrite (18.18) as
o(x,y) = t+ 350 + Cs
(18.24) = Infy[+ 3 (22 4 (2, + 1)

= Infyl+5°+ 5 +3
We conclude that the solution of (18.12) is

1 x 1
=1 NIy T
¢(xay) n|y| 23/ Y 5




