
LECTURE 18

First Order Equations

Example 18.1. Consider the following �rst order linear PDE

�x + 2x�y = y(18.1)

subject to the boundary condition

�(0; y) = 1 + y2 ; for1 < y < 2 :(18.2)

Suppose that �(x; y) is a solution of this PDE/BVP. If we look along the curves of the form

y = f(x)(18.3)

we have

d

dx
� (x; f(x)) = �x + f 0(x)�y :(18.4)

Thus, if we evaluate (18.1) along the curve

y = x2 +C1(18.5)

we get

d

dx
�
�
x; x2 + C1

�
= �x + 2x�y = y = x2 +C1 :(18.6)

Integrating the extreme sides of (18.6) with respect to x we get

�
�
x; x2 +C1

�
=

1

3
x3 + C1x+ C2 :(18.7)

The constants C1 and C2 can be interpreted as follows. The curve (18.5) is a parabola that intersects the
y-axis at the point C1. From (18.7) it is clear that C2 corresponds to the value of � at the point (0; C1).

Equation (18.7) now tells us that by choosing a parabolic curve (by choosing C1) and �xing the value C2 of
�(x; y) at the point where this parabola intersects the y-axis, we can obtain the values of �(x; y) at every
other point along the parabolic curve.

From (18.2), we know the values of � at all the points along the y-axis between y = 1 and y = 2. Using
(18.7), we can thus compute the values of � at all points in the region R of (x; y)-plane that is bounded by
the curves y = x2 + 1 and y = x2 + 2.

To see this more explicitly, let P = (x1; y1) 2 R. Setting

y1 = x21 +C1(18.8)

we see that the parabolic curve through P intersects the y-axis at the point

C1 = y1 � x21(18.9)

which we assume to lie between y = 1 and y = 2. According to (19.2), then the value of � at the point
(0; yo) is

C2 = 1 + y2o = 1 +
�
y1 � x21

�2
:(18.10)
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Thus, equation (18.7) gives us

� (x1; y1) = x21 +
�
y1 � x21

�
x1 +

�
1 +

�
y1 � x21

�2�
:(18.11)

This procedure has uniquely determined �(x; y) in the region R, but has given us no information about �
outside the region R. In order to �x the functional form of � outside of R, we could extend the boundary
condition so that

�(0; y) = g(y) ; 8 y 2 R :

However, no matter how we extend the boundary conditions along the y-axis, as long as

g(y) = 1 + y2

in the interval 1 < y < 2, the functional form of �(x; y) in the region R will not be a�ected.

Example 18.2. Consider now the following PDE/BVP:

x�x + y�y = 1 + y2

�(x; 1) = x+ 1 :
(18.12)

In this example, we could divide through by x, to get

�x +
y

x
�y =

1 + y2

x
(18.13)

and then try to construct solutions along curves y = f(x) with

f 0(x) =
y

x
:(18.14)

However, such a formulation would introduce singularities at x = 0 which could be avoided.

So instead, consider a curve in the (x; y)-plane de�ned by some function 
 : R! R
2; t 7! (x(t); y(t)). If

dx

dt
= x ;

dy

dt
= y ;(18.15)

then

d

dt
� (
(t)) = x�x + y�y :(18.16)

Thus, along the curve 
, the PDE in (18.12) can be written

d

dt
� (
(t)) = 1 + (y(t))2 :

Solving the di�erential equations (18.15) for x(t) and y(t), we can make this equation for � (
(t)) even more
explicit:

dx

dt
= x ) x = C1e

t

dy

dt
= y ) y = C2e

t

so

d

dt
(� � 
) = 1 + (C2e

t)2 :(18.17)

Integrating (18.17) produces

�
�
C1e

t; C2e
t
�
= t+

1

2
C2e

2t + C3 :(18.18)

Without loss of generality, we can assume that the curve 
 crosses the line y = 1 when t = 0. Then if the
curve 
 crosses the line y = 1 at the point xo, we would have

C1 = xo ; C2 = 1 :(18.19)
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Now consider an arbitrary point P = (x1; y1) in the �rst quadrant. Suppose 
 passes through P , then

x = xoe
t

y = et
(18.20)

for some t. Solving (18.20) for xo and t we get

t = ln jyj
xo = x

y
:

(18.21)

We are also given the boundary condition

�(xo; 1) = xo + 1 :(18.22)

Evaluating (18.18) at t = 0 yields

xo + 1 = 0 +
1

2
+ C3 ;

hence

C3 = xo +
1

2
:(18.23)

Equations (18.19), (18.21), and (18.23), now enable us to rewrite (18.18) as

�(x; y) = t+ 1
2
C2e

2t + C3

= ln jyj + 1
2

�
e2 ln jyj

�
+
�
xo +

1
2

�
= ln jyj + 1

2
y2 + x

y
+ 1

2
:

(18.24)

We conclude that the solution of (18.12) is

�(x; y) = ln jyj+
1

2
y2 +

x

y
+

1

2


