APPENDIX C

Solutions to Problem Set 3

Prove (directly) that if ¢, and ¢,, are solutions of

% (p(x)%) +(g(x) + Ar(2))y = 0

on the interval (a, b), respectively for A = A1, and A = Ay, then

b
| on@on @i =o
i A % .

(See Lecture 3) O

Discuss the implications of the Sturm-Liouville Theorem for the following ODE/BVP

d2
1) =
i) =

and their correspondence with the Fourier Theorem. (In other words, show that the Fourier theorem is a
special case of the Sturm-Liouville theorem.)

The general solution of
STHENF=0

is given by

f(x) = ¢y cos(Az) + easin(Ax).
The boundary condition f/(0) = 0 implies

0 = —cAsin(0) + eaAcos(0) = co
so ¢a = 0. The boundary condition f'(L) = 0then implies

0= —cyAsin(AL).
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which will be satisfied (for non-trivial ¢;) if and only if
7

A:%,n:0,1,2,3,

The Sturm-Louisville Theorem then tells us that the solutions
VL if n=0

. —1/2
nmw nw
B () = [/0 cos’ (Tx) dx] oS (Tx) - { \/%cos (%x) if n=1,23,...
, L

will form a complete orthonormal set of basis functions for the interval [0

(B, Bm) = /OL Bn () (2)da = %/cos (nLﬂ) cos (mz’x) dz = 6,

and any continuous function f on the interval [0, L] can be approximated by a series expansion of the form

]. More explicitly, we have

L
o, = @/0 f(x) cos (Tx) dz.
L nm
a, = gan = /0 f(x) cos (L—x) dx

where

If we set

then we can rewrite (C.2) as

n=1
with
L
a, = / f(x) cos (Ex) dx
0
which is just the usual Fourier Cosine Series expansion of f(z). |

3. (Problem 1.6.2 in the text)

(a) For 0 < # < L, solve the problem
¢t - a2¢xx == w(l‘, t)

#0,t) = 0
S(L,1) = 0
q[)(l‘,O) = f($)

by means of a series expansion involving the eigenfunctions of 3/ + A5 = 0, 8(0) = 0, #(L) = 0; where
w(z,t) and f(x) are prescribed functions.

(See Lecture 4.)
(b) If the end conditions are altered to read

$(0,) = 0
(C.3) ¢(L,t)+c¢x((L,t§ =0
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where ¢ > 0 is a constant, find an appropriate set of eigenfunctions and obtain a series solution to the
problem.

Applying separation of variables to the homogeneous version of the PDE we arrive at the following pair of

coupled ODEs:
T"+AT = 0
(04) X" 4 G%X ]

Note first that only the second equation will serve as the ODE of a Sturm-Liouville problem (it is the only
second order linear equation). Secondly, note that by setting

X(0) =
X(L)+eX'(L) =
we can assure that the first two boundary conditions are satisfied. We thus are lead to consider the following
Sturm-Liouville problem

(C.5) 8

g+ A8 = 0
(C.6) po) = 0
BL) +ef'(L) = 0
Now the general solution of the ODE for this Sturm-Liouville problem is
(C.7) B(x) = Acos (Az) + Bsin (Az)

in order to satisfy the first boundary condition 5(0) = 0 we must set A = 0. Let us now impose the second
boundary condition

(C.8) 0 = Bsin (AL) + ¢Bcos(AL).
Then the second boundary condition now requires

(C.9) 0 = sin(AL)+cAcos(AL)
or

(C.10) —cA = tan (AL)

This is unfortunately a transcendental equation for A. It does, however, have an infinite (yet countable)
number of roots. To see this, we note that the function tan(Lz) is periodic with period T, and within

>
any interval I, = (% (nﬂ' — g) , % (nﬂ' + g)) it 1s monotonically increasing and maps [,, onto the real line.
Therefore, the graph of tan (L) intersects the line y = —ca once and only once in each interval I,,. We can
now apply Newton’s method to write down an algorithm for finding a root of
(C.11) F(A) =tan(LA) +cA =0
in each interval I,,. More explicitly, if we set
nm

(C.12) 1= el,
and then define r, o, 7y, 3, ... recursively by the formula

frni) _ tan (Lrn ) + e .
C.13 n,1 =Tni— : = - : ’ :2a3a4a"'
( ) i+l = T, () Lsec? (1) + ¢ !
then
(C.14) Ap = lim 7,

11— 00

will be the root of (C.10).

Let us assume that this has now been carried out - so have obtained an infinite set of solutions A, of (C.11).
Note that both sides of (C.10) are odd functions of A. Therefore, if A is a solution so is —A. Note also that
the S-I functions sin(Az) and sin (—Az) = —sin (Az) are not linearly independent. For this reason, we can
neglect the negative roots of (C.10). We can also neglect the trivial root A = 0 since it corresponds to the
trivial function sin(0z) = 0.
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In summary, let r, ;1 =
Then the functions

Mon =1,2,3,..., and let us define numbers A, by (C.12), (C.13) and (C.14).

Bn(x) = sin (Ap2)

will constitute a complete set of eigenfunctions for the interval (0, L) corresponding to the solutions of the
Sturm-Liouville problem (C.6). Moreover, if we renormalize the 8, by setting

(C.15) () = sin (Ap )

1/2
‘fo sin (/\ z) dx‘

then the set {7, | n € N} will constitute a complete orthonormal basis for the space of continuous functions
on the interval (0,L): i.e

L : - m
.10 [ onterm@ia={ g

We can now apply the completeness property of the eigenfuctions 5, to write

(C.17) S, 1) = an(t)yn(z)

3
—

Because, by construction,

the boundary conditions
#0,t) = 0
S(L,T)+ cpz(L,t) = 0

are automatically satisfied by this ansatz. Plugging (C.17) into the original PDE produces

(C.18) i al ()yn (z Zazan = w(z,1)
n=1 n=1

Applying the completeness property of the 7, we can replace the right hand side of (C.18) by

(C.19) w(z,t) = wn(t)yn(z)

where the coefficients wy, (t) are determined by

L

(C.20) wy (1) :/ Yn (2)w(x, t) d
0

Thus, (C.18) is equivalent to

0 = X.oian(t)y
a, (1

p=10 () =352y @an ()3/(2) = 32,2 wa(t)3n ()
DN CAGEN
= Z&:l (a;l
Zn:l ( ;7,

r) = a2an(t)y, (x) — wn (t)yn (7))

(x
(C.21) o (2) + a2A2ap (1 )~(yn( ) = wn ()70 (2))

In the second step we have simply used the fact that the 4, (like their un-normalized predecessors §,) are
by definition solutions of

N2y, =0
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Multiplying the extreme sides of (C. 21) by ¥m () and integrating between 0 and L yields

0 / )+ X200 (1) — wn (1)) 0 (2) 3 (@) da

= Z<n<>+a2Aian<t>—wn<t>> / () (2)

= ( () + a’*\ay, () — wn(t)) dnm

= a,(t)+ a’)2 am(t) — wm (?)
Thus, in order (C.17) to satisfy the PDE in (C.3) the coefficient functions a,(¢) must thus be solutions of
(C.22) al,(t) + a?Alan (t) = wy(t)

This is first order linear ODE for which the general solution is well known (see e.g., Boyce and DiPrima,
Chapter 2); it is given by the formula

t

(C.23) an(t) =e™* At (/ e Answn(s) ds + cn)
0

with ¢, a constant representing the value of a,(¢) when ¢ = 0.

To fix the constants ¢, we now impose the last boundary condition

(C.24) Fz) = (2,00 =Y an(0)7 Z CnYn (@

n=1 n=1
Multiplying the extreme sides of this equation by v, (), integrating both sides between 0 and L, and
employing the orthonormality properties (C.16) of the v, (2) we obtain

(C.25) cn_/ F@)m (=

In summary, the solution to

¢t - a2¢xx = w(a:,t)

¢(0,1) =
S(L, 1) + cog(L,1) =
¢(z,0) = [f(x)
is given by
é(z,t) = Ze—aﬂit (/0 e®Ans (/0 Yn (2w (2’| 5) da:) ds—i—/o F(@ )y (2) dx') n (%)

where the constants A, are determined by (C.12), (C.13), and (12); and the functions v, (x) are defined by
(C.15). O

4. (Problem 1.8.1 in text)

Use a series expansion technique to solve the problem

% Zg ¢ — 1

$(x,0) = 0

(C.26) 6(0.8) = 1
%L 1)+ ed(Lt) = O
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where ¢ > 0 is a constant, in the region ¢ > 0, 0 < = < L.

Let’s first convert this to a homogeneous problem. Set

(C.27) U(x,t) = ¢(x,t)+((z,1)
We want to choose ((z,t) so that

P(x,0) = 0
(C.28) $(0,t) = 0
(L) + ev(L,t) = 0
These equations lead to the following conditions on ((z,1)
((x,0) = 0
(C.29) C(O )y = —t

0

Co(Lyt) + eC(L,1)
The first two conditions will be satisfied by any function {(«,?) of the form
(C.30) Clz,t) = fla)t —t
with f(0) = 0. The second condition puts a restriction on the choice of f; viz.,

FL)t+e(f(L)t—1) =0,

or

J(L) +ef(L) =

To find a solution of this equation we set
F'@)=c—f(L)e
and integrate both sides. The result corresponding to the initial condition f(0) =0 is
F(z) = ez — f(L)ex
Plugging in # = L and solving for f(L) we get

cl
I =170
Thus, we can take
cl cx
He) = eo = T per = 70p
and
B cx _fele—L)—1
can e = (1) e (o)
Applying the differential operator d; — a?d?2 to ¢ (x,t) = ¢(z,t) + {(z,t) and using (C.26), we find
3 3 cz
aw “(2 axlﬁ) = TteL
=0
C.32
98 (L,t) —|—c1/)(L t) = 0

The boundary conditions for ¢ are thus homogeneous.

To solve (C.32) we make the ansatz

=3 an(0)ue)
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the 3, (x) being a complete basis of functions coming from the Sturm-Louiville problem

y//+/\2y = 0
y(0) = 0
y(L)+ey(L) = 0

(the differential equation with respect to the variable  coming from separation of variables of the homoge-
neous problem corresponding to (7)). The general solution of

y// 4 /\23/ =0
satisfying y(0) = 0 is
y(x) = Asin (Ax)
Imposing the boundary condition y'(L) + cy(L) = 0, requires
Acos (AL) 4+ esin (AL) =0
or
A
(C.33) tan (AL) = —=
c
Equation (C.33) has an infinite number of roots. Let {A,} denote the set of consecutive positive roots of
(C.33). The corresponding eigenfunctions are
yn(2) = sin (Ap2)
(Since both sides of (C.33) are odd functions of A, if A , is a root so is —A,; but the corresponding
eigenfunctions are the same, except for a factor of -1. The reason why we consider only the positive roots of

8) 1s to remove this redundancy. By Sturm-Louiville theory, these functions are all othogonal with respect
g
to the inner pI'OdUCt

(f.9) = / F(2)g(z)dz

An explicit computation reveals

() = 0 L ooz sin(rnz) + 22|
Yn, Ym = mn 7, COS(Ap) SIN(Ap X Qx .
L
= dmn (5 ~ cos (Ap L) sin (/\nL))
L 1
= dmn (5 ~ sin (2/\nL))
and so the functions
1 )
Bn(z) = 773 Sin (An2)
(% — ﬁsin (2/\nL))

will form an orthonormal basis for the set of continuous functions on (0, L). Now set
W, t) =Y an(t)fa()

and write

(C.34) T =N wnbale)

T+cl
the 5, being determined by

L
(C.35) wy = ! 1/2/ (1 ”L) sin (Ayz) de
(% - ﬁ sin (2/\nL)) 0 +ec

Plugging (C.34) and (C.35) into (C.32) yields
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> anO)n(@) + 3 a*Xa)fa(e) = D wal(a)
(C.36) al (t) + a®Xia(t) = wy

The boundary condition ¢(z,0) = 0 implies a, () = 0. Recalling that the general solution solution to a
first order, linear, nonhomogeneous, ordinary differential equation

v +pt)y=g(t)

with 1nitial condition
y(O) = Yo

1s

1 t

y(t :—[/ /thsds—l—yo]
0= | [ #tos)

where

p(t) = exp [/Otp(l‘)dl‘]

(see Boyce and DiPrima, Sec. 2.2); we find that the solution of (11) satisfying o, (0) = 0 is

Wp, _a?A2
an(t) = 3 (1 —ec Ant)

Thus,
v =1 g (1= ) bute)

Finally,

d)(l‘,t) 1/)(l‘,t) —C(l‘,t)

Z a;j\an (1 — e—a2>\it) B(x) =t (%)

n

with Ap and w, determined, respectively, by (C.33) and (C.35). O



