
APPENDIX C

Solutions to Problem Set 3

1.

Prove (directly) that if ��1 and ��2 are solutions of

d

dx

�
p(x)

dy

dx

�
+ (q(x) + �r(x)) y = 0

y(a) = 0

y(b) = 0

on the interval (a; b), respectively for � = �1, and � = �2, thenZ b

a

��1(x)��2(x)r(x)dx = 0 :

if �1 6= �2.

(See Lecture 3)

2.

Discuss the implications of the Sturm-Liouville Theorem for the following ODE/BVP

d2f

dx2
+ �2f = 0(C.1)

f 0(0) = 0

f 0(�) = 0

and their correspondence with the Fourier Theorem. (In other words, show that the Fourier theorem is a
special case of the Sturm-Liouville theorem.)

The general solution of

f 00 + �2f = 0

is given by

f(x) = c1 cos(�x) + c2 sin(�x):

The boundary condition f 0(0) = 0 implies

0 = �c� sin(0) + c2� cos(0) = c2

so c2 = 0: The boundary condition f 0(L) = 0 then implies

0 = �c1� sin(�L):
106
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which will be satis�ed (for non-trivial c1) if and only if

� =
n�

L
; n = 0; 1; 2; 3;

The Sturm-Louisville Theorem then tells us that the solutions

�n(x) =

"Z L

0
cos2

�n�
L
x
�
dx

#�1=2
cos
�n�
L
x
�
=

( p
L if n = 0q

2
L cos

�
n�
L x
�

if n = 1; 2; 3; : : :

will form a complete orthonormal set of basis functions for the interval [0; L]. More explicitly, we have

(�n; �m) =

Z L

0

�n(x)�m(x)dx =
2

L

Z
cos
�n�x
L

�
cos
�m�x

L

�
dx = �mn

and any continuous function f on the interval [0; L] can be approximated by a series expansion of the form

f(x) =
1X
n=0

�n�n(x)(C.2)

where

�n =

r
2

L

Z L

0
f(x) cos

�n�
L
x
�
dx:

If we set

an =

r
L

2
�n =

Z L

0

f(x) cos
�n�
L
x
�
dx

then we can rewrite (C.2) as

f(x) =
a0

2
+

1X
n=1

an cos
�n�
L
x
�

with

an =

Z L

0

f(x) cos
�n�
L
x
�
dx

which is just the usual Fourier Cosine Series expansion of f(x).

3. (Problem 1.6.2 in the text)

(a) For 0 < x < L, solve the problem

�t � a2�xx = w(x; t)

�(0; t) = 0

�(L; t) = 0

�(x; 0) = f(x)

by means of a series expansion involving the eigenfunctions of �00 + �� = 0, �(0) = 0, �(L) = 0; where
w(x; t) and f(x) are prescribed functions.

(See Lecture 4.)

(b) If the end conditions are altered to read

�(0; t) = 0
�(L; t) + c�x(L; t) = 0

(C.3)
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where c > 0 is a constant, �nd an appropriate set of eigenfunctions and obtain a series solution to the
problem.

Applying separation of variables to the homogeneous version of the PDE we arrive at the following pair of
coupled ODEs:

T 0 +�T = 0
X 00 + �

a2X = 0
(C.4)

Note �rst that only the second equation will serve as the ODE of a Sturm-Liouville problem (it is the only
second order linear equation). Secondly, note that by setting

X(0) = 0
X(L) + cX0(L) = 0

(C.5)

we can assure that the �rst two boundary conditions are satis�ed. We thus are lead to consider the following
Sturm-Liouville problem

�00 + �2� = 0
�(0) = 0

�(L) + c�0(L) = 0
(C.6)

Now the general solution of the ODE for this Sturm-Liouville problem is

�(x) = A cos (�x) + B sin (�x)(C.7)

in order to satisfy the �rst boundary condition �(0) = 0 we must set A = 0. Let us now impose the second
boundary condition

0 = B sin (�L) + cB cos (�L) :(C.8)

Then the second boundary condition now requires

0 = sin (�L) + c� cos (�L)(C.9)

or

�c� = tan (�L) :(C.10)

This is unfortunately a transcendental equation for �. It does, however, have an in�nite (yet countable)
number of roots. To see this, we note that the function tan(Lx) is periodic with period �

L , and within

any interval In =
�
1
L

�
n� � �

2

�
; 1L
�
n� + �

2

��
it is monotonically increasing and maps In onto the real line.

Therefore, the graph of tan (Lx) intersects the line y = �cx once and only once in each interval In. We can
now apply Newton's method to write down an algorithm for �nding a root of

f(�) = tan(L�) + c� = 0(C.11)

in each interval In. More explicitly, if we set

rn;1 =
n�

L
2 In(C.12)

and then de�ne rn;2, rn;3, : : : recursively by the formula

rn;i+1 = rn;i � f (rn;i)

f 0 (rn;i)
=

tan (Lrn;i) + crn;i

L sec2 (rn;i) + c
; i = 2; 3; 4; : : :(C.13)

then

�n = lim
i!1

rn;i(C.14)

will be the root of (C.10).

Let us assume that this has now been carried out - so have obtained an in�nite set of solutions �n of (C.11).
Note that both sides of (C.10) are odd functions of �. Therefore, if � is a solution so is ��. Note also that
the S-L functions sin(�x) and sin (��x) = � sin (�x) are not linearly independent. For this reason, we can
neglect the negative roots of (C.10). We can also neglect the trivial root � = 0 since it corresponds to the
trivial function sin(0x) = 0.



3. (PROBLEM 1.6.2 IN THE TEXT) 109

In summary, let rn;1 = n�
L
, n = 1; 2; 3; : : : , and let us de�ne numbers �n by (C.12), (C.13) and (C.14).

Then the functions

�n(x) = sin (�nx)

will constitute a complete set of eigenfunctions for the interval (0; L) corresponding to the solutions of the
Sturm-Liouville problem (C.6). Moreover, if we renormalize the �n by setting


n(x) =
sin (�nx)���R L0 sin2 (�nx) dx

���1=2(C.15)

then the set f
n j n 2 Ngwill constitute a complete orthonormalbasis for the space of continuous functions
on the interval (0; L): i.e., Z L

0


n(x)
m(x)dx =

�
1 if n = m

0 if n 6= m
:(C.16)

We can now apply the completeness property of the eigenfuctions 
n to write

�(x; t) =
1X
n=1

an(t)
n(x) :(C.17)

Because, by construction,


(0) = 0


(L) + c
0(L) = 0

the boundary conditions

�(0; t) = 0

�(L; T ) + c�x(L; t) = 0

are automatically satis�ed by this ansatz. Plugging (C.17) into the original PDE produces

1X
n=1

a0n(t)
n(x)�
1X
n=1

a2an(t)

00

n(x) = w(x; t)(C.18)

Applying the completeness property of the 
n we can replace the right hand side of (C.18) by

w(x; t) =
1X
n=1

wn(t)
n(x)(C.19)

where the coe�cients wn(t) are determined by

wn(t) =

Z L

0


n(x)w(x; t) dx :(C.20)

Thus, (C.18) is equivalent to

0 =
P
1

n=1 a
0

n(t)
n(x)�
P
1

n=1 a
2an(t)
00n(x)�

P
1

n=1wn(t)
n(x)
=

P
1

n=1

�
a0n(t)
n(x)� a2an(t)
00n(x)�wn(t)
n(x)

�
=

P
1

n=1

�
a0n(t)
n(x) + a2�2nan(t)
n(x)�wn(t)
n(x)

�
=

P
1

n=1

�
a0n(t) + a2�2nan(t) �wn(t)

�

n(x)

(C.21)

In the second step we have simply used the fact that the 
n (like their un-normalized predecessors �n) are
by de�nition solutions of


00n + �2n
n = 0 :
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Multiplying the extreme sides of (C.21) by 
m(x) and integrating between 0 and L yields

0 =

Z L

0

1X
n=1

�
a0n(t) + a2�2nan(t) �wn(t)

�

n(x)
m(x) dx

=
1X
n=1

�
a0n(t) + a2�2nan(t)� wn(t)

� Z L

0


n(x)
m(x) dx

=
1X
n=1

�
a0n(t) + a2�2nan(t)� wn(t)

�
�nm

= a0m(t) + a2�2mam(t) �wm(t)

Thus, in order (C.17) to satisfy the PDE in (C.3) the coe�cient functions an(t) must thus be solutions of

a0n(t) + a2�2nan(t) = wn(t) :(C.22)

This is �rst order linear ODE for which the general solution is well known (see e.g., Boyce and DiPrima,
Chapter 2); it is given by the formula

an(t) = e�a
2�2
n
t

�Z t

0

ea
2�2

n
swn(s) ds + cn

�
(C.23)

with cn a constant representing the value of an(t) when t = 0.

To �x the constants cn we now impose the last boundary condition

f(x) = �(x; 0) =
1X
n=1

an(0)
n(x) =
1X
n=1

cn
n(x) :(C.24)

Multiplying the extreme sides of this equation by 
m(x), integrating both sides between 0 and L, and
employing the orthonormality properties (C.16) of the 
n(x) we obtain

cn =

Z L

0

f(x)
n(x) dx :(C.25)

In summary, the solution to

�t � a2�xx = w(x; t)

�(0; t) = 0

�(L; t) + c�x(L; t) = 0

�(x; 0) = f(x)

is given by

�(x; t) =
1X
n=1

e�a
2�2

n
t

 Z t

0

ea
2�2

n
s

 Z L

0


n(x
0)w(x0; s) dx

!
ds+

Z L

0

f(x0)
n(x
0) dx0

!

n(x)

where the constants �n are determined by (C.12), (C.13), and (12); and the functions 
n(x) are de�ned by
(C.15).

4. (Problem 1.8.1 in text)

Use a series expansion technique to solve the problem

@�
@t � a2 @

2�
@x2 = 1

�(x; 0) = 0
�(0; t) = t

@�
@x(L; t) + c�(L; t) = 0 ;

(C.26)
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where c > 0 is a constant, in the region t > 0, 0 < x < L.

Let's �rst convert this to a homogeneous problem. Set

 (x; t) = �(x; t) + �(x; t) :(C.27)

We want to choose �(x; t) so that

 (x; 0) = 0
 (0; t) = 0

@ 
@x (L; t) + c (L; t) = 0

(C.28)

These equations lead to the following conditions on �(x; t)

�(x; 0) = 0
�(0; t) = �t

�x(L; t) + c�(L; t) = 0 :

(C.29)

The �rst two conditions will be satis�ed by any function �(x; t) of the form

�(x; t) = f(x)t � t(C.30)

with f(0) = 0. The second condition puts a restriction on the choice of f ; viz.,

f 0(L)t + c (f(L)t � t) = 0;

or

f 0(L) + cf(L) = c :

To �nd a solution of this equation we set

f 0(x) = c � f(L)c

and integrate both sides. The result corresponding to the initial condition f(0) = 0 is

f(x) = cx� f(L)cx :

Plugging in x = L and solving for f(L) we get

f(L) =
cL

1 + cL
:

Thus, we can take

f(x) = cx� cL

1 + cL
cx =

cx

1 + cL

and

�(x; t) = t

�
cx

1 + cL
� 1

�
= t

�
c(x� L) � 1

1 + cL

�
:(C.31)

Applying the di�erential operator @t � a2@2x to  (x; t) = �(x; t) + �(x; t) and using (C.26), we �nd

@ 
@t � a2 @

2 
@x2 = cx

1+cL

 (x; 0) = 0
 (0; t) = 0

@ 
@x (L; t) + c (L; t) = 0 :

(C.32)

The boundary conditions for  are thus homogeneous.

To solve (C.32) we make the ansatz

 (x; t) =
X
n

�n(t)�n(x) ;
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the �n(x) being a complete basis of functions coming from the Sturm-Louiville problem

y00 + �2y = 0

y(0) = 0

y0(L) + cy(L) = 0

(the di�erential equation with respect to the variable x coming from separation of variables of the homoge-
neous problem corresponding to (7)). The general solution of

y00 + �2y = 0

satisfying y(0) = 0 is

y(x) = A sin (�x) :

Imposing the boundary condition y0(L) + cy(L) = 0, requires

� cos (�L) + c sin (�L) = 0

or

tan (�L) = ��
c

(C.33)

Equation (C.33) has an in�nite number of roots. Let f�ng denote the set of consecutive positive roots of
(C.33). The corresponding eigenfunctions are

yn(x) = sin (�nx) :

(Since both sides of (C.33) are odd functions of �, if � n is a root so is ��n; but the corresponding
eigenfunctions are the same, except for a factor of -1. The reason why we consider only the positive roots of
(8) is to remove this redundancy.) By Sturm-Louiville theory, these functions are all othogonal with respect
to the inner product

(f; g) =

Z L

0

f(x)g(x)dx :

An explicit computation reveals

(yn; ym) = �m;n

�
� 1

2�n
cos(�nx) sin(�nx) +

1

2
x

�����
L

0

= �m;n

�
L

2
� 1

2�n
cos (�nL) sin (�nL)

�

= �m;n

�
L

2
� 1

4�n
sin (2�nL)

�
and so the functions

�n(x) =
1�

L
2
� 1

4�n
sin (2�nL)

�1=2 sin (�nx)
will form an orthonormal basis for the set of continuous functions on (0; L). Now set

 (x; t) =
X
n

�n(t)�n(x)

and write
cx

1 + cL
=
X
n

wn�n(x) ;(C.34)

the 
n being determined by

wn =
1�

L
2 � 1

4�n
sin (2�nL)

�1=2
Z L

0

�
cx

1 + cL

�
sin (�nx) dx :(C.35)

Plugging (C.34) and (C.35) into (C.32) yields
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X
n

�0n(t)�n(x) +
X
n

a2�2n�(t)�n(x) =
X
n

wn�n(x)

or

�0n(t) + a2�2n�(t) = wn :(C.36)

The boundary condition  (x; 0) = 0 implies �n(t) = 0. Recalling that the general solution solution to a
�rst order, linear, nonhomogeneous, ordinary di�erential equation

y0 + p(t)y = g(t)

with initial condition

y(0) = yo

is

y(t) =
1

�(t)

�Z t

0

�(t)g(s)ds + yo

�
where

�(t) = exp

�Z t

0

p(x)dx

�
(see Boyce and DiPrima, Sec. 2.2); we �nd that the solution of (11) satisfying �n(0) = 0 is

�n(t) =
wn

a2�2n

�
1� e�a

2�2
n
t
�

:

Thus,

 (x; t) =
X
n

wn

a2�n2

�
1� e�a

2�2
n
t
�
�n(x) ;

Finally,

�(x; t) =  (x; t) � �(x; t)

=
X
n

wn

a2�n2

�
1� e�a

2�2
n
t
�
�n(x)� t

�
c(x� L)� 1

1 + cL

�

with �n and wn determined, respectively, by (C.33) and (C.35).


