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1. Introduction/Motivation

For some time now I’ve been trying to get a handle on a means of specifying the annihilators of unipotent
representations. The basic prototype of the what I have been looking for is Devra Garfinkle’s description
of the generators of the annihilators of the minimal representations.

Let G be a simply-connected complex Lie group with Lie algebra g. Let N be the cone of nilpotent elements
of g. It is well known that N consists of only finitely many G orbits, and that there is a unique nilpotent
orbit Omin of minimal dimension. In fact, one can explicitly describe the polynomial generators of the
radical ideal in S (g) corresponding to Omin. Let Fµ denote the irreducible finite dimensional representation
of g with highest weight µ, and let λ be the highest root of g. Then the space S2 (g) of homogeneous
polynomials of degree two decomposes under the adjoint action of G as

S2 (g) ≈ F2λ ⊕ F0 ⊕ Fµ1
⊕ · · · ⊕ Fµk

(the point being that the summands corresponding to the trivial representation and the representation with
highest weight 2λ always appear). Then

IOmin = S (g)
(
F0 ⊕ Fµ1

⊕ · · · ⊕ Fµk

)
Let πmin be the unipotent representation of G attached to the minimal orbit. Then it is known that πmin

is unitary and the annihilator of πmin (the so-called Joseph ideal) is generated by

Sym
(
(F0 − λmin)⊕ Fµ1

⊕ · · · ⊕ Fµk

)
where Sym : S (g) → U (g) is the symmeterizer map. (This is essentially Garfinkle’s result.)

In trying to generalize this picture for other nilpotent orbits and their corresponding unipotent repre-
sentations one eventually has to confront a problematic example discovered by Joseph: the 8-dimensional
nilpotent orbit O8 of G2. It turns out that there are a number of peculiarities associated with this orbit:

• There are two completely prime primitive ideals attached to this orbit (only one of which corre-
sponds to a unitary representation).

• One of these ideals (curiously enough, the one annihilating a unitary representation of G) has the
property that Gr (J) is not prime (because Gr (J) 6=

√
Gr (J) ).

• The closure of O8 is not a normal variety, but O8 embeds densely in the minimal orbit of B3 ≈
so (7,C) which is a normal variety, and the unitary representation attached to O8 can be realized
as the (irreducible!) restriction of the minimal representation of B3 to G2.

It turns out also that the 10-dimensional nilpotent orbit of G2 embeds densely in the minimal orbit of
a larger simple group (in this case D4 ≈ so (8,C)). Moreover, the minimal representation of D4 upon
restriction to G2 reveals a sort of dual pair theta correspondence: g2 is the subalgebra of fixed points for
the outer automorphisms corresponding to the S3 symmetry (“triality”) of the Dynkin diagram of D4 and

πmin,so(8)

∣∣
g2×S3

=
⊕
σ∈Ŝ3

Vσ ⊗ Eσ

Here the Vσ comprise the special unipotent representations with infinitesimal character ω1 + ω2 and Eσ is
the irreducible S3-module corresponding to σ.

This situation raised a bunch of questions for me; the main one being how prevalent is this sort of phenom-
enon; which in turn had two parts:
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• When does one have dense embeddings

g ⊃ O ↪→ O′ ⊂ g′

of one nilpotent orbit into a nilpotent orbit of a larger Lie algebra. (I should remark that I was
interested in this because the annihilators of a non-minimal unipotent representation of the smaller
group might be most easily revealed by studying the embedding of U (g) into the Joseph ideal of
U (g′).

• Is there always an accompanying dual pair phenomenon that could be used to provide realizations
of non-minimal unipotent representations?

Unfortunately, the answers to both questions have already been attained. R. Brylinski and Kostant answered
the first, and Jing-Song Huang answered the second (at least for simple complex groups). But it’s such a
pretty story, I thought it be a nice topic for a Lie groups seminar.

2. Normality and Shared Orbits (Brylinski/Kostant)

The following is a outline of how Brylinski and Kostant classified of dense embeddings of the form

(2.1) g ⊃ O ↪→ O′ ⊂ g′

with g a subalgebra of g′. Although they considered the general case when g is a semisimple complex Lie
algebra, in this outline I’ll mostly stick to the case when g is simple (because in the end, it turns out that
if g is simple, then a dense embedding like (2.1) is only possible when g′ is also simple - and that if g is
semisimple, then the allowed embeddings are effectively enumerated simple factor by simple factor).

2.1. Normal Closures of Orbit Coverings. Let G be a simply connected semisimple complex Lie
group with Lie algebra g. Let O be the adjoint orbit of a nilpotent element e ∈ g, and let

ν : M → O

be a G-homogeneous covering and choose ε ∈M such that ν (ε) = e. Then

Ge
o ⊂ Gε ⊂ Ge

and

M ≈ G/Gε

π1 (M) ≈ Gε/Ge
o

Let Q = Q (M) denote the group of all maps α : M →M that commute with the action of G. Then

M ≈ Nε/Gε

where Nε is the normalizer of Gε in G. G × Q acts rationally by algebra automorphisms on R = R (M),
the algebra of regular functions on M .

Let ( , ) be the Killing form on g (or any fixed g-invariant nonsingular symmetric bilinear form on g that
is negative definite on some compact form of g). For x ∈ g define φx ∈ R by

φx (p) = (ν (p) , x) , ∀ p ∈M

and set
R [g] = R (M) [g] = linear span of the functions φx, where x ∈ g

Clearly, as vector spaces R [g] ≈ g. Furthermore, if O is the closure of O, then the subalgebra S ⊂ R
generated by R [g] can be identified with R

(
O

)
.

Lemma 0.1. If Z is a normal algebraic variety, then the ring R (Z) is integrally closed in the field K (Z)
of rational functions on Z.
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Proposition 0.2. • There exists a unique affine variety X containing M as a Zariski open subset
such that all regular functions on M extend to X.1

• The ring R (M) = R (X) = R is a finitely generated C-algebra and

X = Spec (R) .

• The commuting actions of G and Q on M extend uniquely to commuting algebraic actions of G
and M on X.

• The covering map ν extends uniquely to a finite surjective G-equivariant morphism

ν : X → O

• X is a normal variety and in fact X is the normalization of O in the function field of M .
• G has finitely many orbits on X and each is even dimensional
• M is the unique Zariski dense open orbit of G on X and its boundary has codimension at least 2.

We call X the normal closure of M .

2.2. The Right Scaling Action of C∗ on X and the graded Poisson Structure on R (X).
Recall that O = G · e, M = G · ε. The Jacobson-Morosov Theorem says that there are h, f ∈ g such that
{e, f, h} span an sl (2,C) subalgebra of g, with

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h

Then exp (Ch) ⊂ Nε ⊂ G, and so defines a subgroup C of Q = Nε/Gε, the group of all maps M →M that
commute with the action of G), and hence C acts on X. It turns out that the vector field corresponding
to the infinitesimal action of C on O is just two times the restriction of the Euler operator on S (g) to O
(the Euler operator happens to be a G-invariant differential operator tangent to every orbit).

Lemma 0.3. The action of C on X lifts the square of the Euler action on O so that ν
(
ethx

)
= e2tν (x) for

all t ∈ C.

Write k ∈ Z, let
R [k] =

{
φ ∈ R |

(
ethφ

)
(x) = etkφ(x)

}
Proposition 0.4. • The action of C on R = R (X) is completely reducible, and in fact,

R =
∞⊕

k=0

R [k]

is a G-invariant algebra grading.
• Each R [k] is a finite-dimensional G-stable subspace.
• R [0] = C · 1, where 1 is the constant function on X.
• There is a unique point o ∈ X such that ν (o) = 0 ∈ O. This o is the unique G-fixed point of x

and also the unique C-fixed point of x.
• Let m ⊂ R, be the maximal ideal at o. Then

m =
∞⊕

k=1

R [k]

and also m is the sum in R of all non-trivial G-modules.
• If the degree of the cover v is odd (e.g., if M = O), then R [k] = 0 if k is odd.

1It seems to me that the condition that the regular functions on M be extendable to regular functions of the variety in
which it embeds densely is really the crux of the utility such an embedding, and so this condition is a very natural hypothesis.
It is remarkable, therefore, that from this requirement alone, we get a unique candidate for X.
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Recall that an adjoint orbit admits a canonical G-invariant symplectic form ωO. But then the pullback
of ω = ωM = ν∗ (ωO) defines a symplectic form on M . Each φ ∈ R = R [M ] = R [X] then defines a a
Hamiltonian vector field ξφ on M by

ξφ

⌋
ω = dφ

Then R is a Poisson algebra with Poisson bracket given by

{φ, ψ} = ξφψ = ω (dφ, dψ)

Proposition 0.5. The Poisson bracket established above make M a Hamiltonian G-space. Moreover,

• The right scaling action on M scales ω so that

{R [k] , R [l]} ⊂ R [k + l − 2]

• The map ρ : g → R2 , ρ (x) = φx is a Lie algebra homomorphism.
• R [2]+R [1]+R [0] is the unique maximal finite dimensional subalgebra of R containing R [g] = ρ (g)
• If g is semisimple, then R [2] is semisimple. If g is simple, then R [2] is simple.
• If R [1] 6= 0, then the Poisson bracket gives R [1] +R [0] the structure of a Heisenberg algebra and

the bracket operation of R [2] on R [1] defines a Lie algebra surjection

δ : R [2] → sp (2n,C) , 2n = dimR [1]

Now it is important to note that at this point we have concrete realization of the algebraic variety X (other
than as Spec (R (M))). What makes everything about R [2] computable is the idea of Algebraic Frobenius
Reciprocity developed in Kostant’s famous paper on rings of polynomials over g.

Fact 0.6 (Algebraic Frobenius Reciprocity). For every G-module V there is a G-linear isomorphism

t : V Gε

→ HomG (V ∗, R (G/Gε))

defined by
t (v) (γ) (g · ε) = 〈g · v, γ〉 , ∀ g ∈ G , ∀ v ∈ V Gε

, γ ∈ V ∗

Lemma 0.7. For every G-module V and k ∈ Z, t defines by restriction of V Gε

[k] a linear isomorphism

tk : V Gε

[k] → Hom (V ∗, R [k])

In other words, we can explicitly enumerate what g-types appear in R [k].

Example 0.8. Let g = sl (3,C) and let M be the simply-connected 3-fold cover of the principle nilpotent
orbit O of g. Let V ≈ C3 be the standard representation, so that h has eigenvalues −2, 0, and 2 on V . One
finds that the spaces

V gε

[2] ,
(
∧2V

)gε

[2] , and (g)gε

[2]
are all 1-dimensional, and so the simple modules C3, ∧2C3, and g all occur exactly once in R [2]. Further-
more, if q1 and q2 are submodules of R [2] carrying, respectively, C3 and ∧2C3. Then r = g + q1 + q2 is a
14-dimensional algebra semisimple algebra of rank 2. This already limits r to g2.


