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1. ORBITAL INVARIANTS OF ADMISSIBLE REPRESENTATIONS

An example of a strong invariant of an admissible representation (by which I mean an invariant capable of
splitting points in éadm) is the distributional character of a representation. Let G be a reductive Lie group,
(m,H) an irreducible admissible representation of G and H is associated Harish-Chandra (g, K)-module,
and let O be its distributional character

o.n=Trw([f@rlwas) . viecr©)
Weaker invariants are things like the annihilator of 7 in U (g), minimal K-types, Gelfand-Kirillov dimensions.

There are also several invariants associated with certain homogeneous affine varities associated with .
These I'll describe below.

1.1. Asymptotic Expansion of Characters.

Theorem 1.1 (Barbasch-Vogan 1980). Let 0, be the lift of ©, via the exponential map to a neighborhood
of the identity on g = Lie (G). If f € C° (G) and t > 0 define

Fr(X) =t mef (171X
Then there is an integer r and tempered distributions {D;};-_ . on g, such that for f € C (G)

O (fr) ~ > t'Di(f)

as t — 0. Furthermore, the support ofb\i is a union of nilpotent orbits in g.

1.2. Characteristic Cycles. Let (7, H) be an irreducible admissible representation of a reductive Lie
group G, and let Hx be its associated Harish-Chandra (g, K )-module.

Theorem 1.2 (Matsumura). Let R be a commutative Noetherian ring and M # 0 a finitely generated
R-module. There there exists a chain

O0=MycM,C---CM,=M
of submodules of M such that for each i we have M;/M;_1 ~ R/P;, with P; a prime ideal of R.

Remark 1.3 (worthy of a lemma). Let R be a commutative Noetherian ring and let @ be a minimal prime
ideal of R. Suppose 0 = My C My C --- C M,, = M is a filtration of a finitely generated A-module M such
that M;/M;_1 = R/P; Then the number of times P; = @ is independent of the choice of filtration.

Definition 1.4. Let R be a commutative Noetherian ring and M # 0 a finitely generated R-module. Let
{Pi,..., P} be the set of minimal ideals containing the annihilator of Ann (M) ={r € R|rM =0}. The
characterisitc cycle of M is the formal sum
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where m (P;, M) is a positive integer defined as follows. Choose any finite filtration of M such that each
subquotient M;/M;_1 is of the form R/Q; with Q; a prime ideal of R. m (P;, M) is the number of times
that Qj = Pz

Definition 1.5. Suppose that X is a finitely generated Harish-Chandra module. Recall that K¢ acts on X.
A good filtration F of X is a (possibly infinite) increasing filtration

0=X_1CXgoCXiCXC

of X, satisfying the conditions listed below. Write U,, for the n'* of the standard filtration of Ulg). By the
Poincaré-Birkhoff-Witt theorem, the associated graded ring gr (Ulg]) is naturally isomorphic to S|g]. The
conditions on a good filtration of X are

(i) X, is finite-dimensional and Kc-invariant.
(ii) The union of all the X, is X.
(iil) The filtrations of X and Ulg] are compatible:

Un X C Xntm
(iv) The associated graded (S (g), Kc)-module gr (X)

00
grr (X) = @XTL/X'VL—l
n=0

1s finitely generated.

The gr (X) inherits compatible of the K¢ and g-actions from X, but because the action of the Lie algebra
t = Lie (K¢) preserves the filtration, it follows that S (g) ¢ C Ann (gr (X)) and so gr (X) can be regarded
as a S(g/t) ~ S (p)-module.

Definition 1.6. Let X be the Harish-Chandra module of an admissible representation of a reductive Lie
group G. Fiz a good filtration of X and let gr (X) be the associated (S ())

1.3. Schmid-Vilonen. Vogan and Barbasch conjectured and Schmid and Vilonen proved that the simi-
larilty between wave front cycles and characteristic cycles can actually be expressed as a precise equality.
The leading term of the local character expansion can be thought of as a complex-linear combination of
nilpotent Gy orbits, allowing us to write

o= X o)+
O, eWF(r)
Schmid and Vilonen refer to
WFE(m) = > 5[0
O, EWF(r)
as the wave front cycle of m and prove that this wave front cycle coincides with the characteristic cycle of
Vogan.

However, this coincidence is not nearly obvious as the notation suggests. First of all the “cycles” [O] that
appear in the characteristic cycle are Kc-orbits in p, while the cycles that appear in the wave front cycle
are nilpotent Gr-orbits in the real Lie algebra g,. The basis for the characteristic cycle / wave front cycle
correspondence is the following theorem of Sekiguchi

Theorem 1.7 (Kostant-Sekiguchi Correspondence). Suppose that G is a real reductive Lie group with
mazximal compact subgroup K. Then there is a natural one-to-one correspondence between the set of nilpotent
G-orbits in the real Lie algebra g, of G and the set of Kc-orbits inp. Suppose that under this correspondence
the orbit of \x € N* corresponds to that of A¢ € p* and Gc is any complex group with Lie algebra g = (go) ¢,
then

o The Gg¢-orbits of iAg and ¢ coincide.



L] dimRG~)\R = 2~dim(cK(c~>\g :dim(ch '/\E
e The mazimal compact subgroups of the isotropy subgroups K (X\¢) and Gr (Ar) are isomorphic.

1.4. Whittaker Cycles? There is a third way of attaching numbers to nilpotent orbits. Let O be a
real nilpotent orbit occuring in the asymptotic expansion of the character of a admissible representation.
Associated to O is a particular parabolic subgroup P = LN of G, a particular character x» of N, and a
generalized Gelfand-Graev representation Ind$ (xo). Set

Wig (1,0) = dim Homg (V, Ind% (Xo))
W_w (m,0) = dimHomg (V™= Ind§ (xo))
be the dimensions of the space of generalized Whittaker modules of type O, and write
WCag (t) = > wayy (m,0)[0]
OeW F(r)
WC o(m) = > wo(m0)[0]
OeWF(m)

Question 1.8. Can one relate either of these Whittaker cycles to wave-front cycles (or equivalently, to
associated cycles).

Theorem 1.9 (Matumoto). For large representations the dimension of the space algebraic Whittaker vectors
coincides with the Bernstein degree of the representation.

Theorem 1.10 (Kostant, Lynch). Let G = KAN be an Iwasawa decomposition of a real reducitive Lie
group. The principal series representations ind%AN (c®e”®1) is large, and the Bernstein degree is
H#W (g0, 0,) - dim (o), where #W (go, a,) is the dimension of the little Weyl group.

Theorem 1.11 (Yamashita). If G is a connected simple Lie group of Hermitian type and let m be an
irreducible unitary highest weight representation of G. Then the multiplicities in the wave front cycle of w
and in WCaiq (T) coincide.

Theorem 1.12 (Nishiyama, Ochiai, Taniguchi, Yamashita and Kato). The associated cycle and the Bern-
stein degree of a large (g, K)-module X, are given by

ACH) = Fww(mO8) O]
Or
BernsteinDeg (1) = 1;)—6 Z W_oo (1, OR)
¢ o

where Or runs over the principle nilpotent orbits in gr, O s the Kc-orbit corresponding to Or via the
Kostant-Sekiguchi correspondence, lg is the number of principal nilpotent G-orbits, and wg 1is the order of
the little Weyl group.

In these talks, we present the results of some exploratory calculations aimed at determining and correlating
the characteristic cycles, multiplicities, and Whittaker vectors for a special class of small unitary represen-
tations. Although our purpose is purely representation-theoretical, and empirical at that, it also illustrates
how representation-theoretical methods, in a sufficiently equivariant setting, might be used to answer rather
difficult algebraic-geometric questions (in particular, the degree of a projective variety.).

2. THE CLASS OF SMALL UNITARY REPRESENTATIONS

2.1. Reductive Lie groups associated with simple Jordan algebras. Let N be a real simple Jordan
algebra with unit e and norm ¢. Let L be the subgroup of GL (V) that preserves ¢ up to a scalar multiple.
Let P be the semidirect product LN, and G the group of rational transformations generated by P and
t:x — —z~'. Then G is a semisimple Lie group, and P = LN is the Levi decomposition of a parabolic
subgroups such that



(i) N is abelian -
(ii) P is conjugate to P (where P is the parabolic of G opposite to P).

Conversely, any parabolic subgroup P = LN of a simple Lie group G satisfying (i) and (ii) arises from a
Jordan algebra structure on N. A classification of the such groups will be given below.

2.2. Restricted roots and multiplicities. Henceforth, G will be a simple Lie group associated to a real
simple Jordan algebra N, with P = LN the corresponding parabolic subgroup of G. Let K be a maximal
compact subgroup of G, and let M = KN L. Let g = Lie(G), ¢ = Lie (K), n = Lie (N), m = Lie (M), etc.
Let t; be a maximal toral subalgebra in the orthogonal complement of m in €. It turns out that there are
only three possilibilities for the restricted root system X of t; in & namely, ¥ is either of type A,,_1, D, or
C,,. Moreover, there is a fairly uniform prescription for writing down the restricted root systems A (&)
and A (g;t1). This goes as follows.

There is a orthonormal basis {74, ...,7,} of t] such that the simple roots of t; in ¢ are
{%fyij:lfyiﬂﬁzl,...,n—l} ifY=A4,
(2.1) ?’yi:tffyi_kl|i:1,...,n—1}U{'yn} it¥Y=0C,

3Vitsvip li=1...,n—1}U{iv, 1 +37,} ifS=D,

and that the roots of t; in g are {:i:%’yi + %%‘» :I:%-} in all cases. Moreover, it turns out, that for a given

G, both the short roots :I:%Ayi + %’yj, and the long roots v, have fixed multiplicities. Accordingly, we define
integers d and e by

= common multiplicity of short roots =+ %%‘ + %%‘ in ¢
e = common multiplicity of long roots =+, in ¢

and the multiplicities of the (restricted) short and long roots of t; in g are then, respectively, 2d and e + 1.
Let n be the dimension of t; (which coincides with the real rank of g); it so happens that there is also a
convenient formula for m = dim (n).

m=n(d(n—-1)+e+1)

Lemma 2.1. Let t = t; + t5 be an extension of tito a CSA for € (with t¢ C m). For a € t* ~ t; @, we
will write o = (o p), with « € 5, u € t5. Then the positive system X corresponding to the choice (1) of
simple roots in 3 can extended to a positive system AT = AT (€t) for A (8t), in such a way that a root
(a; ) is positive in ATif € BT,

Remark 2.2. Write g = £+ for the Cartan decomposition of g. It turns out that the weights {(£v,;0), (£7,;0),... (£7v,:;0)}
are the extremal weights of representation of K carried by p. Indeed, for the positive system AT arising
from positive system (1) of X, the highest weight of the representation of K on s is (v1;0) and that the
weights
Ai = (7130) + (72;0) + -+ + (735 0)
are dominant integral for A™.

Indeed, let t be an arbitrary Cartan subalgebra of €, and AT a positive system for A (¢ t). Then set v, equal
to the highest root of the representation of K on p and let W -+, be the Weyl orbit of ;. Then there will
be a unique root v, in the W -+, that is orthogonal to v, and is such that v, +7, is dominant integral. And
there will be a unique root 5 € W -+, that is perpendicular to both 7, and v, and such that v; 475 + 73

is dominant integral. Continuing in this manner, we can construct a sequence {ﬁ yor s Yn } of p-roots. We

can now set t; = span { [p%, p_%} l[i=1,... ,n}, and we're back where we started from with v, =,

t1

Below is a tables of the simple Lie groups corresponding to non-euclidean real simple Jordan algebras, and
the corresponding values d and e. (Henceforth, we are going to drop from consideration the cases where
Y = A, _1, which correspond to the cases where N is a formally real Jordan algebra.)



G K Xn d e m = dimn
SLQn SOQn Dn 1 0 n2

503, o, S0s, x SOs, D, 2 0 m?—n
E: (7) SUs Dy 3 4 33

SO, S0, x 80, Dy 2 P 24p4yg
Sp (n,C) Spn c, 1 1 n?+n
SL(2n,C) SUs, C, 2 1 2n?

SO (4n,C) SOy, C, 4 1 4n? —2n
E- (C) Es Oy 3 8 45

SO (p,C) SO, Cy 2 p—4 2p-—2
Sp(n,n) Spn X Spy, C, 2 2 4n?
SL(2n,H) Spa, C, 4 3 4n?

SO (p,1) SO (p) cCi 0 p—1 p

2.3. BSZ and Sahi’s representations. Put = d(n — 1) 4+ e and let v be the positive character for
L such that v?" is the determinant of the adjoint action of L on n. For t € R, let (Il;, I (t)) denote the
(normalized) induced representation I nd% (vh).

Theorem 2.3. Assume X (€, t1) is not of type Dy. Then I (t) has an unitarizable constituent I1; of rank
t—1<m,if and only t = d(n—14) + e+ 1. Moreover, for this value of t, this unitarizable constituent is
actually a submodule, and its K-types are

{)\:Zajfyj|ai:ai+1:-~-:an20}

and these K-types occur with mulitplicity one.*

Notation 2.4. Henceforth, G will consistently denote one of the groups listed in Table 1, n will denote its real
rank (which happens to equal to the rank of the corresponding Jordan algebra), and I1;, i € {1,...,n} will
denote the irreducible unitarizable constituent of the corresponding induced representation as prescribed in
the preceding theorem.

3. ASYMPTOTICS OF THE K-TYPES OF II;

Let X be the Harish-Chandra module of an irreducible admissible representation of a reductive Lie group
G. A filtration

(3.1) {O}CXOCX1CX2C"'
of X by subspaces X; is said to be a good filtration ([V]) if

(i) dim X, < oo
(ii) each X, is K-invariant
(iii) g- X, € X,,41 for all n € N.

Given a good filtration (3.1) of Harish-Chandra module X, one has a corresponding graded object

gr(X) = @ Xn/Xn—1
n=0

which is a finitely generated, graded (S (p), K)-module. As such, by a theorem of Hilbert and Serre, there
exists a polynomial ¢ (n) such that

Px(n) = Z dime (Xq/Xg-1)

q>n

Here and henceforth we will use v, to denote either a restricted root in 3 or its (trivial) extension to A (& t).



Write

B
(3.2) vx (n) = ﬁn’j + lower order terms

Then, the leading power D of ¢y is the Gelfand-Kirillov dimension of X and the leading coefficient of ¢
times D! is the Bernstein degree of X.

3.1. Initial Formula for Leading Term of pp, (k). Let II; be the Harish-Chandra module of the
irreducible unitarizable constitute of Ind% (v*), occuring for t = d (n — i) + e + 1. Tts K-types® are

i
A= AZZaﬂj\aiEN ;oar>ap>--->a; >0

Jj=1

ifi <n,i=mnand X =C,, or
7
A= A:ZaﬂjlaiGN P >a > 2> Aoy 2 |ap| >0
j=1

ifi=nand ¥ = D,,.
We filter II; as follows
V., = {K-types A = a1y, + - - - + a;y; of II; such that a; < n}

This is a good filtration of V.(We note that each V, is finite-dimensional and obviously stable under K, and
because the highest weight of s is ,, the only K-types that can occur in g-V;, are K-types A = a1y, +- - -+a;7y;
with a1 <n+1.)

We will now compute the leading term of the Hilbert polynomial for II; :

k ai ai—1
pu, (k) = dim (Vi) = Z Z Z dim Fo, vy, 4-a;v,
a1:0 a2:0 ai:O

Here F denotes the irreducible finite dimensional representation of K with highest weight A. If ¥ = D,
and 7 = n the summation on the far right should actually run from a,, = —a,_1 to a,_1. Shortly, we’ll
introduce a special factor to keep track of this special case.

According to the Weyl dimension formula, the dimension of F is

dmF, = [ A

aEA}"( <pK7a>

In order to use this formula to compute the dimensions of the K-types A = a1y, + - - + a;7, appearing in
II;, we shall split the set A} into three disjoint sets:

+ AT + +
Ay = Az,i U AE,i,c UAY,

where
Agﬂ. = {aeAf| (a,7;) #0for some j € {1,2,...,i}}
AT, = {aelAf] () =0forallje{1,2,...,i}} = Af — AF;
AL = {aeAf | (a,y;)=0forall je{l,...,n}}

2We specify K-types by their highest weight vectors.



We can now, accordingly, break up the product over the elements of A} in the Weyl dimension formula

(a7 + -+ @iy + P, @) (a7 + -+ @iy + pres @)
40 Fary, o 1 o) 11 )
N K aeATUAY | K
_ H (a1yy + -+ aiv; + p, @) H (Pxc> @)
aEA;i <pKa O[> a€A+ UA; . <pKa Oé>

_ H (@171 + - +aiv; + p, Q)
achf, (P> )
(HaeA;i (a1yy + -+ @iy + pies a})
(Macas, (xra))

Thus, the Hilbert polynomial for II; will be

k ai—1
pr; (k) - Z T Z dim Fal’71+---+ai’>’i
CL1_0 a;
a;—1
Z Z H < aiv; + '+ai’Yi+PK>04>>
a1=0 a; a€Ax; <pK’a>
a;—1 + >
a cay,, o
Z Z H ( 171 + s > + lower order terms
a1=0 a; a€lAy, pK7a>
ai—1
1
Z Z H (a1y, + -+ + aiy;, @) | + lower order terms

(HaeAEi <pK, a>) a1=0 a; a€ly,

Now if ¥ = D,, and i = n we actually have

k An—1
po, (k) = E T E dim Fo, 5, 4 +an,
a1=0 ap=—an—1
k An—2 an—1 -1
— Z e Z Z dlm Falryl+...+am’\/n + E dlm Fal'Yl ctamY,
a1=0 an-1=0 \a,=0 An=—0n—1
k an 2 An—1 An—1
= E E d1mFa171+.4.+am% + E dim Fa171+"'+am7n
a1=0 Uy — 1—0 a,=0 anp=1
k an 2 An—1
= E E 2dimFa1»},1+...+am»y dlmFaler ctan—17,+0
a1=0 Ap— 1—0 an=0
k a'n 2 An—1
= E 2dim Fy,y, - 4amy, | + lower order terms.
a1=0 Ap— 1—0 an=0
2 k An—1
= E e E H (a1y, + -+ + anyy,, @) | + lower order terms
(HaeAEi <pK7 a>) = an a€Ay,

Introducing a factor
_J 2 ifi=nand ¥~ D,
fGiT 1 1 otherwise
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to accommodate the special case when ¥ = D, and i = n, we thus have the following formula for the
Hilbert polynomial of II;

Ai—1

k

oy

pm, (k) = i Z e Z H (a1v, + -+ a;y;, @) | + lower order terms
(HQEAEi <pK7 Oé>) a1=0 a; QEAEi

Before preceding further we set

D¢ = H (P> )

a€Ax,
k ai—1
Ng,i (k) = ZZ H (a1 + -+ ;s @)
a1=0 a; a€Ayx,
so that
oo, (k) = %NGJ (k) + lower order terms

Clearly, the Gelfand-Kirillov dimension is tied up in the asymptotic behavior of Ng ; (k) as k — oo, while
all three factors contribute to the Bernstein degree of II;. Indeed, if

Ng.i (k) = ck® + lower order terms
then
GK dim (II;) = 2d
and so the Bernstein degree of II; will be
- EGJ'Cd!
" Dgi

B

3.2. Computation of Ng,; and the Gelfand-Kirillov dimension of II;. In this subsection we shall
compute the constants ¢ and d such that

a;—1

k
Ng.i (k) = Z e Z H (a1y, + -+ a;iv;, @) | = ck? + lower order terms

a1=0 a; a€Ay,

Recall that we have the following description of the restricted system X (¢;t) in terms of the e

e Short roots of the form %;Wj , which occur with a common multiplicity d.

e Long roots of the form ~,, which occur with a common multiplicity e.

Writing
=t ot
and according split the roots in @ € Ax = A (§;t) into two components
a=(qp) , «a€t] , pet
and extend the positive system X to a positive system for A (&h).
Formula 3.1. If
1 di(2n—i—1)
H (<a171 +"'+ai7i7a>) = (2) Na17---aa'i
aEA;gi

where

Ve (T1IT (60~ @) ) [TL @



Proof. Let

REEp
5= {%2% 11<j<j <i
REEp
5, = {%2% |1§j§i<j’§n}
oh = {%_27’|1Sj<j’§i
2 o= {ylisi<iy
so that
5
+ +
Ez _Uzz,k
k=1
Then
H (a1yy + -+ aiv; + pg, @)
ozEAJZri
d d
= | TI (@n+-+amit+ox.a) | | I @+ +am; +px.0)
aes], aex],
d d
[T (@t tami+oxa) | | TI (@m+--+aiv +px.a)
acst, acxf,

H a1y + - +aiv; + pg, @)
aGE;fs

Y5 =Yy V5 =y
= H <a171+"'+am+px,J2J><aw1+"'+am+pm]2]>

1<j<j/<i

v+ Vi =V
II 11 <am +---+am+pK,”2J> <am +~-~+am+pK712]>
1<j<ii<j’'sn

€

: H <a1’Y1 + ot ay, +/)K77j>
j=1

d d e
1 1 n—u
- II ;(-a) [T ;o II «
1<5<j’ < 1<j<i 1<j<e
1\ di@n—i=1) fi-1 i , i i .
- (3) T II (@) @) ) [T @
J=14'=j+1 =1

di(2n—i—1)
1
= <2) Nal,...,wi
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We now have
1)di(2n—i—1) k ai—1

Ngi (k) = (2 Z Z Nay..a

a10

but our task remains to compute the constants Cq; and d such that
Ng.,i (k) = ck® + lower order terms

The next step will be to establish an integral formula for the constant c. Let

i—1
/ day / / Na.,....a;da;
a1=0 a; =0

Using a Riemann sum argument we can bound the multiple summation between two integrals:

k a;—1
<Y D Y Ne ST
a1=0az2=0 a; =0

for all k. Now observe that the integrand N,,, . ., is a homogeneous polynomial of total degree 2ndi —
di?> — id + ie. It is easy to see that a each stage of evaluation the integrand increases its total degree but
remains homogeneous. Thus, upon evaluation I (k) will result in a monomial of the form ck2ndi—di® —idtie+ti

. 2 . . .
and I (k + 1) will evaluate to ¢ (k 4+ 1)>"% =% 74+ with the same constant ¢. We thus have

a;—1
ck2ndi—di®—id+ie < Z Z Z Ny, < ¢ (k + 1)2ndimdi—idie , for all k> 1
al—O ag= =0
Dividing everything by k2ndi—di®—id+ic o have
a;—1
— k?ndz di? 77,d+716 Z Z Z Nal’ S ¢ + terms of order (l/k)
a]1= Oaz 0 al—O

Now letting kK — oo, we can conclude for sufficiently large k£ we must have

a; —1
. 2 . .
E E E Nay...a; ~ ck?rdizdiz=id+ic 4 ower order terms
a1=0as=0 a; =0

In fact, since I (k) is a monomial in k, the constant ¢ can be obtained by simply evaluating I (k) at k = 1.

— (;)dl(% i 1)/ da1/ das - - /_1 ﬁ ﬁ ((aj)Q—(aj/)2>d li[(aj)Qd(n—i)-‘re da;

i=15'=5+1 i=1

Note that in the preceding calculation we have shown that the dimension of the K-types of II; grow like
kdi(2n7i)+i(efd) ) Thus,

Proposition 3.2. The Gelfand-Kirillov dimension of I1; is
D =2di(2n—1i)+2i(e—d)

We also the following formula for the leading term of N¢ ; (k)
Ng.i (k) = C’G,ikdi(zn_i)“(e_d) + lower order terms

with the constant Cq ; determined by the integral formula

o 1 1d ‘“d @it ‘ 2\ ¢ 2d(n—i)+e | 4
o= g [ o o [ (T IT (0 - 0007)') (T

J=1j'=j+1 Jj=1
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We'll now procede with the evaluation of the integral in the formula for Cg ;. Set

I, (i,d,p) = /dal/ das - - /ﬂ H H ( — (aj )2)d ﬁ(aj)p

j=1j'=j+1 j=1
After a change of variables, z; = (aj) ,7=1,...,1 we have
1 [t i . d : p=1
Tdp) =g [ e [ AT I et (T
j=1j'=j+1 j=1

To evaluate this integral we can employ Selberg’s integral formula (as stated by I.G. Macdonald, Some
conjectures for root systems, STAM J. Math. Anal., 13 (1982), 988-1007).

Lemma 3.3 (Selberg, Macdonald). Let

i

Ji(a,b;c) = / H (a:? (1- xj)b) 1D (z)*° day - - - da;
n ‘7:1
where C* = {(xl,...,xi) ER|0<z; <1, jzl,...,i},
D= H (xj - mj’) )
1<j<y'<i
and a,b, c are complex numbers satisfying

Re(a) > -1
Re(b) > -1

n—1

1 Re(a+1) Re(b+1)
n—1 >

Re(¢) > —min (n’ ,
Then
H F(je+DIT(a+(k—1c+1)I'(b+(G—1)c+1)

Ji (a,b;¢) = T(c+ )T (a+b+2+(i+j—2)c)

We can readily massage the Selberg integral formula to handle our particular integral. First of all we note
that the integrand of (x) coincides with that of the Selberg integral when we take a = (p — 1) /2, b =0, and
¢ = d/2 and restrict the domain of integration to {33 eR’ [0<a; <z < - <mg <7 < 1}. We note
also that our parameters p and d will always be non-negative real numbers.

Next we partition the domain of integration for Selberg’s integral, the unit cube in R?, into a set of n!
disjoint wedge-like regions:

D, = {ze R*|0< To(i) < To(io1) <+ < To(a) < Ty < 1} ) ogesS;
¢, = |J D,
oES;

Note how we have used the permutation group S; to parameterize sets D,. We can thus write

JZ-( ) J;/ xjp |D (2)|* day - - - d;

But, since the integrand is manifestly invariant with respect to interchanges of variables, we can, by a
change of variables, write each of the integrals in the sum as an integral over

={z€eR[0<a; <aj1 < - <ap < <1}



We thus obtain

d 7
s (P=0; 2) =2 /D I (o))" | 1D (o @) deo) - dzoi

o€eS; Jj=1

But now we note that the integrand is invariant with respect to permutations of variables, and so

1(m0:2) = X [ (TLeew)? ) 1Dt o

ocES; Jj=1
1 T 1 i a
= Z / d$1/ dxi H(l‘j)p |D (.7,‘)|
ces; 70 0 j=1
= 2% (i,d, p)

And so we can conclude that

, 1 d
I(i,d,p) = QTZ,JZ ( »0»2)
Putting this all together we have,

Proposition 3.4. (i) The Gelfand-Kirillov dimension D of a representation I1; is given by
GK dim (II;) =2di (2n — 1) + 2i(e —d + 1)
(ii) The leading coefficient of Ng,; (k) is
B 1 2d(n—i)+e—1 d
Coi = 312i(2dn—d(i+1)+1) Ji ( 2 05 2)
D (B )T (=) D) (A0 40

el
$12di(2n—i—1)+i = r (% 4 1) r (d (n— i) + e+3+(i2+j72)d)

3.3. Evaluating Dg ;. Recall

where
A ={ae A (Bt +t) | (a,7;) # 0 for some j € {1,...,i}}

Once one has expressions for the 7, in terms of the basis vectors {e;} of the Euclidean space in which the

roots of £ are usually expressed, the A;’i are evaluated fairly easily.

Below we present a summary of the results of these calculations; we’ll confine the explicit calculations of

the denominators to an appendix.

4. SUMMARY: GELFAND-KIRILLOV DIMENSIONS AND BERNSTEIN DEGREES

Theorem 4.1. Let G be one of the Lie groups listed in Table 1. Let n denote the real rank of G, and
let d and e denote, respectively, the common multiplicity of the short and long roots in the restricted root
system A (&), Let II;, i = 1,...,n be the (g, K)-module of the unitarizable constitutent of one of Sahi’s

representations. Then

e The Gelfand-Kirillov of II; is
GK dim (II;) = 2di (2n — 1) + 2i(e —d + 1)



e The Bernstein degree of II; is

ex (i) (di(2n—1)+i(e—d+1))Cq,
Br, =
(HaeAgi <PK»04>)
where
i) = 2 ifi=nand ¥ ~ D,
ezl = 1 otherwise
. ) i T (1)1 (d(n—i) + SR 0 (450 1)
Gi T Codi(2n—i—1)+ N it+j—
IECTTEUT L T (44 1)T (d(n i) + SR

and the remaining data is contained in the following table:
G K ¥, d e D¢, = HaeA+ (PK> )
SLa, 50a, D, 1 0 e (2n —2j + 1)!

. 2
808,50 502, xS0z, Dy 2 0 ((,(fi;i)l’), T, (2n—2j + 1)!)
212355%7 if =1
B (7) SUs Ds 3 4 21037537 if i=2,3
SO, , SO, x SO, D, 2 PH=L Ll(p_2)(g—2)
Sp(n,C)  Spn Co 11 2 (ITjey (20— 2j + 3)!
i(4n—2i—1) n— n—2i
7 n—2j !
SO (4n,C)  SO4y Cp 4 1 2, (% (2n - j)!)
229313567411313217 if i=1

E7 (C) Er Cs 3 8 242319597611313217 if i=2,3
SO (p,C) SO, Cy 2 p—4 [[Lis(—2)(p- 2J+1)
Sp(nn)  SpoxSpe Cu 2 2 22 ([T, 2n-2j43)1)
SL(2n,H)  Span Cn 4 3 2% (25?32)! (H?:l (% (n —j)!))
SO (p,1)  SO(p) Ci 0 p—1 4(p—2)

APPENDIX A. EXPLICIT CALCULATIONS OF THE DENOMINATORS Dg ;

A.1. Useful Formulas. Here’s a table from Bourbaki

AT = {61i6]|1<l<]<n+1}
p=73mer+(n—2)es+ -+ (2—n)e, —ne,i1)

B, +—{el|1<z<n}u{el:|:e]|1<2<‘7<n}
p=3(2Cn—1)er+(2n—3)es+ - +3en_1+€)
At = {261|1<Z<H}U{€1:|:e]‘1<’L<j<n}
p=ne;+(n—1)ea+ - +2e,_1+en

D, At ={e;te; |1<i<j<n}

p=m—-1es+(n—2)ea+ - +en

Er AT = {de;+¢; | 1<i<j<j}U{es—erdU{d(es—en)+ 0, (-1)"Ves | T2 0 ()}

p:€2+2€3+364+465+5€6—g67+%68

13

Formula A.1.

i-1 i i—1 :
(4) [T I v -i-06 -0 =11 (g - )

J=1j'=j+1 Jj=1
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Proof.
i-1
LHS = (N=3j=3)0G" =9)
J=1j'=5+1
i—1
= (N=2j-1)(1)(N=2/-2)2)- - (N—i—j+1) (-1 N —i—j)(i—j)
j=1
— (N=B ()N =4 () (N=0) =2) (N—i—1) (1= 1)
(N = 5) (1) (N = 6)(2) -+ (N =i — 1) (i~ 2) (N~ i —2) (i 2)
(N 2 +3) (1) (N — 2i +2) (2)
(N —2z+ )(1)
B (N —-5)! (N —2i+3)! (N —2i+1)!
= (oo ) (a2 (s @) (e o)
B s 2j+1) i) —
()
Formula A.2.
U g T ((N—i—i— 1) (n— )
(B) jl;[lj,l:[-i_l(]vfjfj)(] j)j_l((N_n_j_l)! (Z—])')
Proof.

LHS = H H N-j=i0G =)

= MW —i—j-D-g+HYIN—i—j=2)(i-j+2)(N-n—j+1)(n-1-j)(N-n—j)(n-7j)

= N—i—2)())(N—i-3)(i+1) - (N—n)(n—2)(N—n—1)(n—1)
(N—i=3)(i—1)(N=2-i-2)(i+2-2)-(N=n—1)(n—3) (N —n—2)(n—2)

(N=2i-2)2)(N=2i—3)(3)- - (N—n—i+2)(n—i) (N—n—i+1)(n—i+1)
(N=2i—1)(1)(N=2i—-2)(2)- (N—n—i+1)(n—i—1) (N —n—i)(n—1i)
)!

- (o) (s ) (e )

(2n —2i — 1) (n —1)!
(n—i—1)! 0!

s
_ U((N—%—J—l)( j)).!>:RHS

(N=—n—j-=1!(

Formula A.3.
(€)

(H H (N—j—3) J—])(H H N—j—j J—J>:H< — 2_j+_1)1 (n —j)!)
Jj=1j'=j+1 j=1j'=i+1 ) n—17 )!
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Proof. Using Formulas A and B we have

LHS = H H (N—j—7") J—J)( —J—J)(j’—j))
=1j'=j+1 Jj= 1]—1""1
1 7 .
B (N —2j+1)! N—i—j—1! (n—j)
B ]_1((NZJ )(H(Nnjl)'( jﬂ))
i—1 . . .
B (N—2j+1 (N—Z—j—l' ])! (N=2i—-1)! (n—1d)!
(T =2+ 1) N —2i—1)! (n—i)!
B ‘7‘_1<(N—n j—=1! —n—z—l (0)! )
: N—2j+1)
_ J((]E[_njj_l)!(ng) RHS

Formula A.4. (Another version of the preceding formula)

) (H 1 i) ]—j>):H<(J(VN_n2jj_”j)l<n—j>!)

Jj=1j'=j+1 Jj=1

Proof. In view of the preceding formula suffices to show that

(H H (N=j—34)0 —J) (H H N—j—j)( —j)) (H ﬁ (N—j—j')(j’—j))
Jj=1j'=j+1 Jj=1j'=j+1 Jj=1j'=i+1

i—1 7 n n
RHS = ( (N-j—3")0 —J) (H Il &v-i-i)G —j)> ( [T Ww—i-s)@" -4
j=1j'=j+1 Jj=17'=i+1 j'=i+1
i—1 n n

( I - y—y)(j’—j)) ( 1T (N—i—j’)(j’—i))

Jj=1j'=j+1 J'=i+1

The Calculations, Case by Case

A2 G=S5Ls,. K =S50, ¥=D,

o= [2,0,...,0] = 2¢,
vy = [-2,2,0,..., 0] = 2e4
yey = [0,...,0,-2,2,0,0] = 2en_s
oy = [0,...,0,-2,2,2] = 2ep
vy = [0,...,0,-2,2] = 2e,
a1y, + -+ any, = [2a1 — 2a2,2as — 2as, . .., 29 — 2421, 20n_1 — 20y, 26y, + 205,_1]

pr=Mm—=-1)er+(n—2)ea+---+ep_1

|
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So
<pK76J> _n_j

In this case we have v, = 2¢;, and so

A ={ejtep [1<j<j <i}U{ejtep|1<j<i,i+1<j <n}

Hence,
-1 i n
H (pr,c) = H H (pcrej +ej) (prsej —€jr) H H (pr-€j +ej) (prsej —€j)
e}, J=14=j+1 J=1 =it
i—1 % 7 n
= II G—i+n="'=0 | [II TI (n—i+n—-3)G" -4
Jj=1j'=j+1 j=1j'=i+1
i—1 % 7 n
= @n—j=VG =N (I] TI @en-i-iG" =9
Jj=1j'=j+1 j=1j'=i+1
e ((2n =25+ 1)
- (=2 w0
=1 J=1
= ((2n =25+ D! (n 7))
j=1
C(n—D
= 2
(n—i—1) ' I+l

where in the final step we apphed Formula C with N = 2n.

Thus,
 (n-1) ) |
H <PK,04>*mH(2n*2J+1)~
aGA;i Jj=1
A3 G= SOgn’Qn. K= SOQn X SOgn Y= Dn
Y1 = [1,0,---,0;1,0,...,0]=€1+é1
v = [-1,1,0...,0;—1,1,0,...,0] = ez + &
vs = [0,-1,1,0,...,0;0,—1,1,0,...,0] = e3 + &5
vy = [0,...,0,-1,1,0;0,...,0,—1,1,0,0] = en_s + én_os
oy = [0,...,0,-1,1,1;0,...,0,~1,1,1] = en_1 + én_1
Neo= [0,...,0,-1,1;0,...,0,—1,1] = e, + én
a1y, + -t any, =la1 — a2y Qne1 — Ay Q1 F Qa1 — A2y Qe — Ay A1 + Q]
Pk = (n—Deg+(n—2)es+-+ep1+n—1)é1+(n—2)éa+ -+ €,

= (pr-€j) = (P, €j) =n—j
In this case we have
AL, = f{ejfep|1<j<j <iyUfejtep|1<j<i,i+1<j <n}
U{ej+é, |1<j<j <i}U{é+ép|1<j<i,i+1<j <n}
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i—1 i on
H (pr,c) = H H (ej + €57, pk) (€j — €50, pr) H H (ej +ejr,pi) (€j — €50, pr)
aeAY J=1j"=j+1 Jj=1j'=i+1
i—1 7 7
H H (€j + €5, pK) (€5 — €j, P) H H (€5 + &1 pr) (€5 — €1y i)
Jj=1j'=j+1 Jj=1j'=j+1
2
i—1 7
= II I @en—i-ha' = | | II II @rn-i-i)G =)
Jj=1lj'=j+1 j=1j"=i+1
2
: 2n72‘7+)
= H m o ()
Jj=1 J
2
(n—1)!
(n—z—l'H n=2j+1)
j=1
Ad. G =B (7). K=2SUs X=Ds
Y= [070a0,1,07070]:§(€1+€2+63+64*€5*66*67*68)
1
Yo = [071,03*17070,1,0]:§(€1+€2*€3*€4+€5+66*€7*68)

—_

v3 = 10,1,0,0,0,—1,0] = - (e1 +e2 —e3 —eq4 —e5 — eg + €7 + €3)

o |

a1y + a7y, + asys = [0,a2 + a3, 0,a1 — as,0,a2 — as, 0]
1
Pr =35 (Te1 + 5eq + +3e3 + e4 — e5 — 3eg — bey — Teg)
We carried out the calculation of HaeA; . (pg, ) for i = 1,2,3 using Maple, and obtained the following

results.
II (pxry = 2'28°5%7
aEA;l
II (px.y = 2'9375%7
aEA;2
H (p,a) = 2'9375%7
aeA;S
A5 G =50, K =50, x50, ¥ =Dy
Y1 = [1,0,...,0;1,0,...,0]:€1+él
vy = [1,,0...,0;=1,0,...,0] = e, — &

a171+a272 [a1+a2,0,-~-,O;al—a2,07...,0]

There are four case here, corresponding to p and g being even or odd. However, since

Af, = (A0 Al ) U (A%,0 Alyy)

= (a8 u(at).



we’ll have

H (Prs ) = H (Prcs ) H (Prs )

el aE(A;i)p ae(A;i)q

and it will suffice to develop formulas for

H <pK7 a>

ae(A;i)%

and

H <pKa Oé>
ae(A;i)ZkJrl

Another convenience for the SO (p, q) case is that

+ At
Az,1 = A2,2

A.5.1. Even Case. (Ag,z)%.

bk = (k=—1Der+(k—2)ea+---+er
= <pKa€j>:k_j

(88:),, ={atel2<i<hu{a—¢l2<i<h)

And so

k
H <,0K,Oé> = H(pK761+ej><pKa6176]‘>

ae(as)),, Jj=2
k
= JIee-i-nG-1
j=2
= (k—1)(2k-3)!
1
= — — |
3 (2k —2)!
+
A.5.2. Odd Case. (Az i)Qk -
’ +
1 1 1
PK = 5(2]{1—1)€1+§(2]€—3)62+"'+§6k_1

1 .
S (oges) = 5 k=2 +1)

(a8,), =fer+ei 12 SkPU{er—e; |22 Sk} U{er)



And so

H <pKaO‘> =

aE(A+ )2k+1

And so we see that whether p is even or odd

11

ozG(Agr i

Hence, for SO (p, q)

k
(prcser) H Pi-e1+€5) (Px,e1 — €;)
=2

1

=

k=D ]]Ck=5G-1)

O |

~
||
¥

(2k — 1) (2k — 2)!

(2k — 1)!

N RN~ DN~

((2k +1) — 2)!

(Prs ) = 5 (p—2)!

II (oxi0)= i (p—2)! (¢ —2)!

aEA;i

19

A6. G=Sp(n,C). K = Sp, Y¥=C,

Y1 =
Y2

Gy, =

[2a1 — 2ag,...,2an-1 — 2ap, 2a,]

P = mer+(n—1)es+- - +2e,-1+e,
= (pgsej)=(n—j+1)

In this case we have v, = 2¢;, and so

Af,=fejxep |1<i<j <i}U{ejEep 1<) <1,

i+1<j <npu{2e|1<j<i}
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SO

i—1 7 1 n
IT (w0 = |II TI (exoes+ei) o —erd | LTI T (pxoei+eir) (orces =€)

acAf, J=15'=j+1 J=1j=it1
[
H <pKa2€j>
j=1
i—1 [ [ n
= (I] II en—i-i+2G" - ||I] I] @r-i-i+20G -9
j=1j'=j+1 j=1j'=i+1
7
[[@n-2i+2
j=1
 2n42-2j+1)! (n— ) %in!
= - n— : .
j=1(2n+27n7]71)! J (n—1)!

%

2l H (2n — 25 4+ 3)!

—_i —
oo\ L5
2in) [ ¢ (n —1i)!
= == 2n — 2j + 3)!
o | Ll @n =2t =
j=1
= 2| [J @n—2j +3)!
j=1
A7. G=SL(2n,C). K = SU,, Y=0q,
Y1 = [1707"'7071}261_6271
Y2 = [_171705"'70517_1]262_627171
Y = [0,...,-1,2,=1,...,0] = e, — €nt1
a171+"'+an7n:[al_a27~-~7an71_an;2an7an71_an7~-~7a1—a2]
1
P = 5((277,71)614’(27173)624’"'*(2n73)62n_17(27171)62”)
1 .
= (pr-€j) = 5 (2n—2j+1)
AL, = Heg—epl1<ji<i 5 j<j <2}
U{ej—ep|i+1<j<2n—i ; 2n—i<j <n}

Ufej —ej [2n—i<j<j <2n}
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i 2n 2n—1i 2n—1
H <pK7a> = H H <pK7ej_ej'> H H <pKvej_€j'> H H pKaeJ ")
(XEA;J; j=17"=j+1 Jj=i+1j'=2n—i+1 j=2n—1i4+1j'=j+1
4 2n—1i 2n 1 2n—1
= (I H L) I I ;6-9 11 H )
j= 1J’—J+1 j=i+1j'=2n—i+1 Jj=2n—i+1 J'_J+1
4 1 2n—j 2n 2n—1 1 4 2n
= <2> IT o-a)| II (2) II -9
j=1 J'=j+1 j=it+1 j'=2n—i+1
2n—1 1 2n—j 2n
I (3) IIo-a
j=2n—i+1 J'=j+1

(1) (B 6 225) 1)

Jj=i+1 j=2n—i+1
2ni—i(i+1)/2 i(2n—2i) i(i—1)/2 [ i 2n—i .
1 1 1 9 — i)l
- (L E 1 e | ] 22
2 2 2 . Al on =i =)
j=1 j=i+1
2n—1
II @ -j)
j=2n—1+1
1 i(4n—2i—1) 2n—1 2n—21i 1
- (2) I ee-ar){ 11 2n —2i — )
j=1 j=1

A8. G=S80(4n,C). K=804, x=0C,

Y1 = [071,0,...,0]:61+62
Yo = [0,—1,0,1,0,...,0]:€3+€4
vs = [0,0,0,-1,0,1,0,...,0] = e5 + eg
TYn—1 = [07 te 707 —1,0, 17070} = €23 + e2p—2
Tn = [07 B 70703 _11072] = eap—1 1 €2n
aivy + - +an7n = [070‘1 - a2707a2 —a3,...,0,an,1 - an70a2an}
Pk = (2n—1)e1+(2n—2)ea+ -+ + €251

= (px.€j) =2n—]

AL, = {ej+ep|1<j<2i |, j<j <2n}
Ufezjo1—ej |1<j<i , 2j<j <2n}
Ulegj —ej [1<j<i , 2j<j <2n}
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21 2n % 2n i—1 2n
IT w0 = |II TI exoeited) | | I II (exoezimci—eid | | TT TI (oxoe2i —eir)
acAY Jj=1j'=j+1 j=1j'=2j+1 J=1 /=241
B 12_1[ 12_n[ (4n_ - i 2n L, . — 2n ey
= i=i (1T II ' —-26+1) H T G -29)
j=1j'=j+1 j=1j/=2j+1 J=14'=2j+1
B 12_1[ 12_n[ (4n_ o [ 2n . — 2n -
= i=i (I I ¢ —2i+D H IT G -29)
=1j1=5+1 i=15'=2] J=15/=2j+1
21 2n 21 2n
= \II II @n—i-| 11 II -4
=15/=j+1 i=15=j+1
2% 2n
= (I] TI 4n-i-i"G -4
J=15/=j+1

Adopting Formula (D) to the case at hand (i — 2i, n — 2n, N — 2n)

21 2n 2 ) 0 '
N (4n —2j +1)! A (4n — 25 + 1)! ,
ILIL v =0 ) = I (gt o) = I (G o)

we conclude

IT ) =11 [ (G =)

aGA;L Jj=1
A9. G=FE;(C). K=E =04
Y1 = [1707070a07070] = —e7 teg
Yo = [_170a070707170] :65+66
’YS = [0707()’070707 _1a2] = —€5 + €6

@171 + asvyo + az’ys == [a‘l — az, 07 07 Oa 07 07 az — as, 2@3]
We carried out the calculation of HaeA; (pgc, ) for i = 1,2,3 using Maple, and obtained the following
,1

results.
II (prre) = 2733557*11%13%17
(XEA;1
II (prre) = 22395°7511%13%17
aEA;)Q
II () = 29395°7511%13%17
aEA;3
A.10. G = SO (p,C). K=50, =0,
v, = [0,1,0,...,0) =e; + ez
vy = [0,—1,0,1,0,...,0] = e5 + e4

a1y, + azys = [0,a1 — a2,0,a2,0,...,0]



H <pKa0‘>

T
a€Ay

p=2k+1.
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P = (k_1)61+(k_2)€2+"'+6k,1

AL, = {ejrep|l<i<2 , j<j <k}
Ufegjor—ep [1<j<i , 2j<j <k}
U{ezj —ep | 1<j<ii , 2 <j <k}
21 k i k ; L
= H H (PK-ej +ejr) H H (Pxc»€2j—1 —€jr) H H (pic, €25 — €j1)
7=14'=j+1 j=1 ST =g
21 k i k
= (Il 1T @—s=) {1l 1l G'~2i+y (7'~ 2)
J=lir=i+t j=1j'=2j+1 = 1]/_2]—&-1
23 k i k ; A
(1T i) (T o) (T 0T oo
j=1j'=j+1 j=15/=2j i
21 k 21 k
= (II IT @—i- (1T I -9
J=1j'=j+1 J=1j/=j+1
21 k
= II I @k—5-hG -9
J=1j1=j+1
2 .
2% — 25 4+ 1)!
(k—j—1)!

=1
21

= JI@k -2+~ 3)

<.
[

>2i H (2k — 2§ + 1)! (2k — 2j)

2 :
j=1

Il
/N
—

1 3 1
Pk = (k2)61+(k2)62++26k

1 .
= (PK-ej) = 5(2/{—234—1)

Ag,j = {ej+ei|1<j<2i , j<j <k}
Ulegj1 —ejr [ 1<j<i , 25<j <k}
U{62j_ej’|1§j§i , 2]<]/Sk}

U{e; | 1<) <2i)
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21 k % k i—1 k
IT ex0) = |II TI exeited) | | I II (exoezici—eid | | TT TI (oxoe2i —eir)

aeA}, J=15'=j+1 J=14'=2j+1 J=13'=2j+1
2
<pKa€j>
j=1
21 i k k
= (]I H Ck—j-3+ | I Tl ¢ -2i+1 H I G -2
Jj=17'=j+1 J=1j'=2j+1 Jj=17'=2j+1
2 1
5 (2k—2j+1)
j=1
2 k ik k
= (I] II et-i-7+0|(I] ] O -2+D H I G -2
J=1j'=j+1 J=135'=2j J=1j'=2j+1

(;)2 ]2:[ (2k —2j + 1)

1 21 21 21 k 27 k
= (2) sz—2y+1 IT IT ek—si-s+v) (I II ¢ -9
j=1 j=1j'=j+1 j=1j'=j+1
1 27 21 27 k
— (2) [Mer—2i+0 | (I II @-i-i+DG-4)
j=1 J=15'=j+1
1\2% [ 2 2i (2k — 2j +2)!
= (2> H(Qk‘—?j—i—l) Hw(k’_ﬁ'
1 21 2
= (2> [T @k —2i+2)! 2k —2j+1)

j=1
Thus, we see again we can consolidate the formulas for p = 2k and p = 2k + 1.
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IT (i =TT 502 2+ 1)

aeAf J=1

A1l. G = Sp(n,n). K = Sp, x Sp, =0,

vy = [1,0,...,0;1,0,...,0] =e; + &
vy = [-1,1,0,...,0;=1,1,0,...,0] = es + &>
N = [0,...,0,-1,1;0,...,0,—1,1] = e, + én
ary;+ - Fany, =la1 —ag, ..., p_1 — Qn,Ap; a1 — A2y ..oy Qo1 — Q)
pg = mer+(n—1)es+--+2,1+e,+né1+(n—1)éa+ - +28,-1+¢&,
AL, = fejtep|1<i<i . j<i'<n JUfej—ep|1<j<i , j<j <n}U{2¢]1<j<i}

ufej+ép[1<i<i , j<j<n juU{g—ép|1<j<i , j<j <npu{2g|1<j<i}



H <pK7a>

aEA;i

i n
=1j'=j+1
% n
J=15'=j+1
7 n
j=1j'=j+1

?iQJ?;!

(P> €5 +ejr)

=15'=j+1

I 11

j=1 j'—j+1

<pKa éj + éj’>

@2n—j—3"+2)(" —Jj)

L/ (2n— 25 + 3)!
H( (n—j7+1)!
11

1

(n—1)!

>2
(2n — 25 + 3)!
n—j+1

)

n!

=1

IT II ¢oces -

(n—

25
7
H <pK7 26J>
j=1

~‘/> H pK’2€J
j=1

2

€j/>

H2n j+1)

ﬁQ

2

ﬁ(Qn—2j+3)!

A12.

G = SL (2n,H).

K = San

Y1 =
V2
g

Tn

aryr + o an,

PK
=

Ag,i = {6j—|—€j/ ‘ 1<5<2;
U{egj_l -

= [0,&1 -

2ne1 + (2n—1)eg + - -

¥=0C,

[0,1,0,...,0]:61+€2
[0,—1,0,1,0,...,
[0,0,0,

-1,0,1,0,...,0] =

[0,...,0,

ag,O,agfag,...,

(prcre) =2n—j+1

ey |[1<j<i

U{egj—ej/\lgjgi y
Uf2e; | 1< j < 2)

0]:€3+64

es +ég

7107 1] = €2n—1 + €on,

07 Ap—1 — An, 07 an]

+ 2e2,-1 + €2,

j<j <2n}
2j < j' < 2n}
2j < j' < 2n}
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H (P ) = (H H <PKaej+€j’>) (H H (PKcs €251 — €5 )(H H (Prcs €2 — ’>)

I j=1j'=j+1 j=1j'=2j+1 j=1j'=2j+1

: (H <pK’ 2ej>)

= (ﬁ fn[ (4n—j—j’+2)) (ﬁ ﬁ (j’—2j+1)<]:[ ﬁ 3—21)

J=1j'=j+1 J=1j'=2j+1 J=1j'=2j+1

-(ﬁZ(Qn—j+1))

= (12_[ 12_[ (4n—j—j’+2)) (ﬁﬁ(i’—2j+1)<ﬁ 12_[ J—ZJ)

J=157=j+1 i=1j1=2; J=15/=2j+1
. (2n)!
.221(7
(2n — 2i)!
~ 7 (2n—2i) nead S
j=1j'=j+1 J=1j'=j+1
21 2n
i (2n)! . .
= 22m 1_[1 H (An—j—35"+2)(G—J")
J=1j'=j+1
(2n)! 2/ (4n — 2j + 3)!
— 222 ( A '
(2n — 2i)! H((Qn—j—i—l)! (n=J)

where in the last step we employed Formula (D).

(H H N—j—=ji"G' —j)) =  <(]E,]V_;2fjj)1!)!(n—j)!>

Jj=1j'=j+1

A13. G=50(p,1). K =S50 (p) x=0

a1y, = [alaoa-"ao]

A.13.1. Case A. p = 2k.

b = (k=1Der+(k—2)ea+---+er
= <pK7€j>:k7j

A ={ei+eili=2,... k}U{er—e;|j=2,...,k}



k
I ey = JI@E-5-DG-1)
aeAf j=2
= (k=1)(2k-3)!
1
5(2/@—2)(%—3)!
1
= —(2k-2)!
5 (2% —2)
A.13.2. Case B. p=2k+1.
1
pKZ5((2]{1—1)61+(2k—3)€2—|—"'+36k_1+6k)

A;,li{el}u{61+€j‘1<j<k}U{6176j|1<j§k’}

H (pr.c) = (pg.e1 H PK-€1+ ) (pr,er —ej)

aeA;,i =2
1 k
- 2(2k-1>g(2k—j)(j—1>
_ 2k2‘1(2k-2)(1)(2k—3)(2)~-~(k>(k—1)
= k1)
_ %((2k+1)—2)!

Thus, whether p is even or odd we have

IT (ow0d=502)

aEA;i

= @k=3)(1)2k=4)(2)--- (k) (k=2) (k= 1) (k-

D
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