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1. Recap

1.1. HCρ. Last time I introduced the category of study, the Harish-Chandra modules of the irreducible
admissible representations of regular integral infinitesimal character and immediately applied the Zuckerman
translation principal to reduce the analysis of the associated varieties and primitive ideals of the objects in
this set to the analysis of the case of irreducible Harish-Chandra modules of infinitesimal character ρ. We
denoted the set of (equivalence classes of) irreducible Harish-Chandra modules of infinitesimal character ρ
by HCρ.

1.2. Blocks. I then described how the Atlas version of the Langlands parameterization immediately breaks
up HCρ into block. This happens because at infinitesimal character ρ the Atlas parameters (x, y) amount
to a choice of a K\G/B orbit x and a choice of a K∨\G∨/B∨ orbit y. Here K ⊂ G is the complexification
of the maximal compact subgroup of the real linear group G of interest, and K∨ is the complexification
of the maximal compact subgroup of a real form of the dual group of G = GC; and B,B∨ are fixed Borel
subgroups of, respectively, G and G∨. The blocks in HCρ corresponded to

{(x, y) ∈ HCρ | y ∈ K∨\G∨/B∨, corresponding to a fixed real form of G∨ }

1.3. Cells. We defined a W -graph GB of a block as follows: the vertices of GB are simply the elements
i←→ (x, y) of the block (which we henceforth consider to be enumerated by integers i ∈ {0, . . . , |B| − 1}).
We draw an directed edge between two vertices i and j if

i→ j : πj occurs in πi ⊗ g

The cells of a block B are the groups of vertices C for which there is a directed path (i.e., a sequence of
directed edge traversals) connecting i to j, as well directed path connecting j to i.

Since the representations occuring in πi ⊗ g can not have Gelfand-Kirillove dimension greater than that of
πi, it is clear that the representations in a given cell all have the same Gelfand-Kirillov dimension. In fact,

Theorem 1.1. The representations in a given cell all have the same associated variety.

Different cells can have the same associated variety, however. And in fact, until recently we did not even
know how to identify which nilpotent orbit has AV (Ann (πi)) = GC ·AV (πi) as its closure. However,
this now can be done and I give below the results for the cells in the E8 (R) block of E8 (R). Sometime
later I will describe the mathematics underlying this computation (which involves a serious digression into
Spaltenstein duality, and parabolic induction of nilpotent orbits, and the introduction of the idea of the tau
set of an orbit).

B-C Type Cell #’s
E8 0
E8(a1) 1
E8(a2) 2
E8(a3) 3,5
E8(a4) 4,7
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E8(b4) 6,8,9
E8(a5) 10,13,17
E7(a1) 11
E8(b5) 12,14
E8(a6) 15,18
D7(a1) 16,19,20,21,22
E8(b6) 23,25,27
E7(a3) 24,29
E6(a1)+A1 26,30
D7(a2) 28,31,35
E6 33
D5+A2 32,38,39,45
E6(a1) 34,37
E7(a4) 36,41,43
A6+A1 40
D6(a1) 44,49
A6 42,46,48,50
E8(a7) 47,51,53 (the self-dual special orbit and the corresponding self-dual cells)
D5 54
E6(a3) 55,63
D4+A2 52,57,59,62
A4+A2+A1 60
D5(a1)+A1 58,64,65
A4+A2 56,66,68,69
A4+2A1 61,67,70
D5(a1) 71,79
A4+A1 72,80
D4(a1)+A2 73,78,81
A4 74,82
A3+A2 75,76,83,84,86
D4(a1)+A1 87,89
D4 85
D4(a1) 88,90
2A2 77,91,92
A3 94
A2+2A1 93,95,96
A2+A1 97,99
A2 98,100
2A1 101
A1 102
0 103

Before leaving cells for the time being, I should point out that actually the full W -graph of a block, as
computed by Atlas, has some additional data. First of all, we can (and Atlas does) attach to each edge
i→ j a multiplicity m (i, j) corresponding to the multiplicity of πj in πi ⊗ g. Secondly, we can (and Atlas
does) attach to each vertex i, the tau-invariant of πi. This is actually an invariant of the annihilator of πi

in U (g) which I will define below.

1.4. Primitive Ideals. A primitive ideal in U (g) is the annihilator of an irreducible U (g)-module. It
should be remarked that the distinct representations can certainly have the same primitive ideal. In fact,
different classes of representations can have the same primitive ideal. In fact, the classification of primitive
ideals utilizes an entirely different class of representations than the Harish-Chandra modules discussed
above.
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Let Primρ denote the (finite) set of primitive ideals of infinitesimal character ρ. And let L (λ) denote the
irreducible U (g) module of highest weight λ− ρ. Then

Theorem 1.2 (Duflo). The map

ϕ : W → Primρ : w → Ann (L (wρ))

is surjective.

The fibers of this map are called left cells in W . Thus, the classification of primitive ideals of infinitesimal
character ρ is in terms of certain subsets of W , the left cells.

2. Invariants of Primitive Ideals

In what follows we shall need two particular invariants of a primitive ideal of infinitesimal character ρ; its
tau invariant and an associated special representation of W .

2.1. Tau invariants. Let Mw be the Verma module of highest weight wρ − ρ (containing L (wρ) as its
maximal quotient). Then Me corresponds to the Verma module with the trivial representation as its
maximal quotient and the other extreme is I1 ≡ Ann (M−1) = Ann (L (−ρ)) which is the unique minimal
primitive ideal of infinitesimal character ρ.

Let Π denote the simple roots of g. And for any α ∈ Π, let

Iα ≡ Ann (Lsα) = Ann (M (−sαρ) /M (−ρ))

Theorem 2.1. The primitive ideals Iα, α ∈ Π, are all distinct from each other and I1. Any primitive ideal
strictly containing I1 contains at least one of the Iα.

Definition 2.2. The tau invariant of a primitive ideal I containing I1 is

{s ∈ Π | Is ⊂ I}

Remark 2.3. One can think of the tau invariant of the primitive ideal as prescribing in along which directions
from I a primitive ideal can be reached from I1 (thinking of the primitive ideals Is as being nested around
I1 and s ∈ tau (I) meaning I1 ⊂ Is ⊂ I; putting I on the s-side of I1).

2.2. Special Representations of W .

Theorem 2.4 (Joseph). Let µ ∈ h∗ and consider the function

p : h∗ → N : µ→ GoldieRank (U (g) /L (µ))

Then for w ∈ W , pw : µ → p (wµ) is a polynomial on the dominant Weyl chamber. In fact, pw is a
homogeneous harmonic polynomial.

Fact 2.5. If w and w′ belong to the same left cell (i.e, Ann (Lw) = Ann (Lw′)) then pw = pw′ .

Since pw is a homogeneous harmonic polynomial on h∗, W acts on it and thereby generates an irreducible
representation of W .

Definition 2.6. For σ ∈ Ŵ
Cσ = {w ∈W | spanC (W · pw) ≈ σ}

A representation of σ ∈W that can be constructed in this fashion is called special representation of W .
The subset Cσ ⊂W is called the two-sided cell in W corresponding to the special representation σ.

Theorem 2.7.
|Primρ| =

∑
σ∈cWspecial

dim (σ)
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Theorem 2.8. Suppose w,w′ ∈ Cσ, then

AV (Ann (Lw)) = AV (Ann (Lw′))

Definition 2.9. The nilpotent orbits that arise in this fashion are called special nilpotent orbits.

Remark 2.10. For classical groups, special orbits can be defined as the image of Spaltenstein’s order reversing
“duality” mapping (based on sending a partition to its conjugate partition). Special orbits in this sense are
exactly the special orbits as defined above. Even more succinctly, one can say that an orbit is special if and
only it is the associated variety of an irreducible represenation of infinitesimal character ρ.

3. The picture thus far

block B ⊂ HCρ (same inf. char) Lw , w ∈W
↙ ↓ ↘ ↙ ↓ ↘

cell C ⊂ B (same assoc. variety) Cσ , σ ∈ Ŵspecial

↙ ↓ ↘ ↙ ↓ ↘
??? (same primitive ideal) v ∈ Vσ

4. A partitioning of cells

Recall that the W -graph of a block induces the following graph on a cell: for each element i ∈ C we attach

• a vertex v[i]
• a tau invariant τ [i] = tau invariant of Ann (πi)
• a list of edges with multiplicities e [i] = [(j1,m1) , (j2,md) , . . . , (jk,mk)]

Since a necessary condition for Ann (πi) = Ann (πj) it makes sense to group together those cell elements
whose vertices have the same tau invariants. Thus, we define a partitioning P1 of C by grouping together
those vertices with the same tau-invariant. Call such a collection a P1-subcell of C.

Next for element i in any particular P1-subcell, attach the following second order tau invariant

τ2[i] = {τ [j] | j ∈ edge vertices of i}
and say that two elements i, j belong to the same P2-subcell if

τ2 [i] = τ2 [j] .

Similarly, set
τ3 [i] = {τ2 [j] | j ∈ edge vertices of i}

and say that two elements i, j belong to the sam P3-subcell if

τ3 [i] = τ3 [j] .

Clearly one can continue in this fashion, but eventually since there are only a finite number of cell elements
this partitioning must stabilize. Let P∞ denote the final stable partition (the first Pj for which Pj+1 = Pj).

Theorem 4.1. Let C be any cell in any real form of any exceptional group G. Then the number of P∞
subcells that occurs in C is exactly the dimension of a special representation of W .

Is this a coincidence? Hardly. First of all, it follows from a theorem of Monty McGovern that this partitioning
of cells is compatible with a partitioning by collecting together elements with the same primitive ideal. That
is,

Ann (πi) = Ann (πj) =⇒ i, j belong to same P∞-subcell
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The fact that you get exactly the right number of primitive ideals affirms that you are getting exactly the
the partitioning of the cell by primitive ideals. That is,

Theorem 4.2. Let C be any cell in any real form of any exceptional group G. Then

i, j belong to same P∞-subcell in C =⇒ Ann (πi) = Ann (πj)

Moreover, a case-by-case analysis also reveals:

Theorem 4.3. Let B be the big block (maximal split × maximal split) of an exceptional group E. For each
cell C in B construct the set

τ (C) = {τ [i] | i ∈ C}
Then

# {τ (C) | C ∈ B} = # special nilpotent orbits

In other words, the set of tau-invariants of a cell completely characterizes the corresponding associated
variety:

τ (C) = τ (C ′) ⇐⇒ AV (πi) = AV (πj) for any i ∈ C and any j ∈ C ′

Morever, one has the following commutative diagram

σ ∈ Ŵspecial

↙↗ ↖↘ S
{τ (C) | C ∈ B} · · · ←→ · · · {special nilpotent orbits}

where the maps S is the famous Springer correspondence.

Remark 4.4. By explicitly analyzing of the sets {{τ (C) | C ∈ B}} one can can even identify the Bala-Cartan
type of the corresponding orbit.


