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1. Basic Apparatus

Let g be a semisimple Lie over C, let h be a Cartan subalgebra of g, ∆ = ∆ (h; g) the roots of h in g, Π ⊂ ∆,
a set of simple roots and ∆+ the corresponding set of positive roots. Let G be the adjoint group of g, and
let N = Ng be the cone of nilpotent elements of g. As is well-known N is the (disjoint) union of a finite
number of G-orbits. We shall write G\N indicate the set of nilpotent G-orbits in g.

2. Parameterizations of G\N

2.1. Weighted Dynkin Diagrams. Let O be a nilpotent orbit in G\N and let x ∈ O be a representative
element. By a theorem of Jacobson and Morozov, x extends to a standard triple {x, h, y} ∈ g, such that

[x, y] = h , [h, x] = 2 , [h, y] = −2y

and, moreover, h can be chosen such that h lies in the fundamental dominant Weyl chamber

D∆; {h′ ∈ h | Re (α (h′)) ≥ 0 ∀ α ∈ Π and whenever Re (α (h′)) = 0 Im (α (h′) ≥ 0)}

Theorem 2.1 (Kostant, [5]). Suppose Π = {α1, . . . , αn}. A nilpotent orbit O is completely determined by
the values [α1 (h) , α2 (h) , . . . , αn (h)]. In fact, the only possible values of αi (h) are 0, 1, and 2.

Thus, each nilpotent orbits corresponds to a certain labeling of the nodes of Dynkin diagram of g by one of
{0, 1, 2}. Such a labeled Dynkin diagram is called a weighted Dynkin diagram (or WDD).

Remarks.
(1) Actually, relatively few of the 3rnk(g) possible weighted diagrams correspond to nilpotent orbits. More-
over, there is not even a rule for determining a priori which of these 3rnk(g) possibilities are actually realized
as the WDD of a nilpotent orbit. For that reason, is perhaps more accurate to think of WWD’s as providing
a unique labeling of nilpotent orbits rather than a parameterization of nilpotent orbits.

(2) Nevertheless, an orbit’s WWD does provide some interesting information about the orbit. For example,

• The relative size of an orbit is indicated somewhat by the number of non-zero nodes. In particular,
the principal nilpotent orbit (the largest nilpotent orbit) always corresponds to the WDD consisting
of only 2’s and the trivial nilpotent orbit 0 always corresponds to the WDD consisting of only 0’s.

• Orbits that consist of only 0 and 2’s enjoy many special properties (and are called even nilpotent
orbits).

• Any orbit that has a 2 in its Dynkin diagram is an induced nilpotent orbit (about which we shall
say more later).

2.2. Partition-type classifications. When g is a classical Lie algebra (i.e. a Lie algebra of Cartan type
An ≈ SLn+1 (C), Bn ≈ SO (2n+ 1,C), Cn ≈ Sp (2n,C), Dn ≈ SO (2n,C)), the nilpotent orbits of g can
be parameterized by partitions.

A partition p of N is a list [p1, . . . , pk] of non-negative integers such that

N = p1 + p2 + · · ·+ pk , p1 ≥ p2 ≥ · · · ≥ pk−1 ≥ pk ≥ 0

and where it is tacitly assumed that

[p1, . . . , pk−1, pk] = [p1, . . . , pk−1] if pk = 0

The multiplicity of a part pi of a partition p = [p1, . . . , pk] is the number of times that particular integer
pi occurs in the list [p1, . . . , pk]. One sometimes indicates a partition of N as a product of the form
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(p1)
m1 (p2)

m2 · · · (pk)
mk where

p1 > p2 > · · · > pk > 0 and N =

k∑
i=1

mipi

• The nilpotent orbits of sln are in a one-to-one correspondence with the set P (n+ 1) of partitions
of n+ 1.

• The nilpotent orbits of so2n+1 are in a one-to-one correspondence with the set P1 (2n+ 1) consisting
of partitions 2n+ 1 such that even parts only occur with even multiplicity.

• The nilpotent orbits of sp2n are in a one-to-one correspondence with the set P−1 (2n) consisting of
partitions 2n such that odd parts only occur with even multiplicity.

• The nilpotent orbits of so2n are in a nearly one-to-one correspondence with the set P1 (2n) consisting
of partitions 2n such that even parts only occur with even multiplicity. Partitions in P1 (2n) which
consist only of even parts (necessarily each with even multiplicity) are called very even partitions.
To each very even partition there corresponds two distinct nilpotent orbits.

For the orbits of Dn, it is customary to append an additional label (I or II ) to the very even partitions in
order to maintain a parameterization in terms of (occasionally labeled) partitions.

Remarks 2.2. The partition-type classification provides a very natural and efficient way for dealing with
the nilpotent orbits of classical groups. Not only is the set of possible parameters easy to determine but
many properties of the orbits can be determined directly from their specification in terms of partitions. For
example,

• The closure relations of the orbits corresponds directly to the standard dominance ordering of their
respective partitions.

• Given a partition p ∈PG (one of P (n), P1 (2n+ 1), P−1 (2n), P1 (2n)), it is relatively easy to write
down a representative element x ∈ Op.

• There are nice algorithms for figuring out the dimension of an orbit Op, the Spaltenstein dual (Op)
∨

of an orbit, the orbits (in larger classical groups) obtained from Op by parabolic induction, etc.

2.3. Bala-Carter Classification. The biggest drawback of partition-type classifications is that they only
apply to classical Lie algebras. According to the general philosophy espoused by Harish-Chandra, such a
circumstance clearly belies a deficiency in understanding. A “good parameterization” of nilpotent orbits
should be applicable to any semisimple Lie algebra. In two seminal papers ([1], [2]) appearing 1976 Bala
and Carter achieved such a parameterization. Before describing the Bala-Carter classification we need to
make a brief digression concerning two basic methods of “lifting” a nilpotent orbit in a Levi subalgebra l of
g to a nilpotent orbit in g.

Definition 2.3. Suppose Ol is a nilpotent orbit in a Levi subalgebra l of g, the Bala-Carter inclusion of Ol

is the nilpotent orbit obtained by applying G to the canonical embedding of Ol in g.

incgl (Ol) = G · Ol

(This you can think of as simply extending to L-orbit of an element x ∈ OL to a G-orbit by regarding x as
an element of g and then acting by G.)

Definition 2.4. Suppose Ol is a nilpotent orbit in a Levi subalgebra l of g. The G-orbit induced from Ol

is
indgl (Ol) = unique dense orbit in G · (Ol + u)

where u is the nilradical of any parabolic subalgebra p which has l as its Levi factor. (It is a theorem due to
Luzstig and Spaltenstein that the G-orbit so constructed is independent of the choice of u.)

We shall see later that, by a deep theorem of Barbasch and Vogan, these two constructions are actually
dual to one another in a very precise sense.

By the way, there is special case of an induced orbit that we shall see quite prominently in what follows.
We may as well define it here.
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Definition 2.5. A Richardson orbit is a nilpotent orbit that is induced from the trivial orbit 0 of a Levi
subalgebra.

The key idea in the Bala-Carter parameterization is the notion of a distinguished nilpotent element. This is
just a nilpotent element that is not contained any proper Levi subalgebra. It was by studying the special
properties of the orbits of distinguished elements in Levi subalgebras that Bala and Carter arrived their
parameterization of the nilpotent orbits in g. However, in the end, the Bala-Carter parameterization is
most easily described in terms of distinguished parabolic subalgebras. These are defined as follows.

Definition 2.6. A parabolic subalgebra p = l + u of g is called distinguished if

dim l = dim (u/ [u, u]) .

Theorem 2.7 (Bala-Carter, [1], [2]). There is a natural one-to-one correspondence between nilpotent orbits
of g and G-conjugacy classes of pairs (l, pl) where l is a Levi subalgebra of g and pl = m+u is a distinguished
parabolic subalgebra of l. The correspondence is given by

(1) (l, pl)→ incgl
(
indlm (0)

)
Of course, at this point, this is not a very explicit parameterization, relying as it does on a classification of
the conjugacy classes of pairs (l, pl). However, Bala-Carter had at their disposal Dynkin’s 1957 classification
([4]) of conjugacy classes Levi subalgebras of semisimple Lie algebras, and it was fairly easy to identify the
possible distinguished parabolic subalgebras of such a Levi.1

Now it turns out, in Dynkin’s classification, that there is nearly a one-to-one correspondence between
conjugacy classes of Levi subalgebras and the Cartan types of their semisimple part. In other words, it
almost always happens that if l,l′ are two Levi subalgebas of g and [l, l] is isomorphic to [l′, l′] as a semisimple
Lie algebra, then l and l′ are conjugate in g. For this reason, you can nearly always get away with labeling
a conjugacy class of Levi subalgebras by the Cartan type of its semisimple part. For simple Lie algebras
the exceptions to this simple circumstance are easily accounted for, and handled by adding some additional
ornamentation to Cartan types. For example, F4 has two conjugacy classes of Levis whose semisimple parts
are of type A1. The A1 factor of one of this corresponds to an sl2 subalgebra generated by a long root and
the other to an sl2 subalgebra generated by a short. These are two conjugacy classes are distinguised by

writing A1 for the “long” sl2 and Ã1 for the “short” sl2.

2.4. Combinatorial Bala-Carter parameters. When g is not simple, or when actually wants to identify
a set of generators of a Levi subalgebra, Dynkin’s lists in terms of annotated Cartan types becomes a major
pain. Bala and Carter’s notation for the distinguished orbits is also only mildly informative even when it’s
deciphered.2 Below we give a parameterization of nilpotent orbits in terms of certain pairs (Γ, γ) where Γ
is a subset of the simple roots of g and γ is a subset of Γ.

2.4.1. Standard Γ’s. Above Π denoted a choice of simple roots of g. Actually, in what follows, we shall think
of Π more abstractly: first as the nodes of the Dynkin diagram of g, or as a list of integers {1, . . . , rnk (g)}
corresponding to a labeling of the nodes of the Dynkin diagram of g following Bourbaki conventions.

One standard way to producing a Levi subalgebra is to select a subset of Γ of Π and set

lΓ = h +
∑

λ∈span〈αi|i∈Γ〉

gλ

The correspondence

Π ⊃ Γ→ {conjugacy class of lΓ}

1Spoiler Alert: Note that as the notation on the right hand side of (1) suggests the Bala-Carter correspondence between

nilpotent orbits and G-conjugacy classes of distinguished parabolic subalgebras of levi subalgebras is reducible to a corre-
spondence between nilpotent orbits and G-conjugacy classes of certain “flags” of Levi subalgebras (l,m), m ⊆ l. In fact, this
correspondence will be reduced further to a correspondence between W -conjugacy classes of pairs (Γ, γ) where Γ is a subset

of the simple roots of g and γ is a “distinguished” subset of Γ .
2E.g. the distinguished orbits of E8 are denoted by E8, E8 (a1), E8 (a2), E8 (a3), E8 (a4), E8 (b4), E8 (a5), E8 (b5), E8 (a6),

E8 (b6), and E8 (a7).
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is actually surjective onto the set of conjugacy classes of Levi subalgebras, but it is also many-to-one in
general. However, there is a simple criterion that decides when two such Levi subalgebras lie in the same
conjugacy class:

Theorem 2.8 (Dynkin, [4]). Two Levi subalgebras lΓ and lΓ′ are conjugate in g if and only if Γ is conjugate
to Γ′ under the Weyl group of g.

Thus, an easy way to parameterize the conjugacy classes of Levi subalgebras is to

• construct the power set 2Π (the set of all subsets of Π)

• partition 2Π into W -conjugacy classes Γ̃
• select from each such W -conjugacy class a representative Γ.

A collection Ψ = {Γ1, . . . ,Γk} so obtained will be called a collection of standard Γ’s. It follows from
Dynkin’s theorem that the correspondence

Ψ→ {conjugacy classes of Levi subalgebras} : Ψ 3 Γ→ lΓ ∈ G · lΓ

is one-to-one.

Here is an even more expedient way of generating a collection of standard Γ’s using John Stembridge’s
Coxeter package (and Maple).

MkStandardGammas := proc(Gtype)

local i,r,PS,SGs,p,cr:

r := rank(Gtype):

PS := map(x->convert(x,list),combinat[powerset](r)):

SGs := {}:

for i from 1 to nops(PS) do

p := op(i,PS):

cr := coxeter[class_rep](p,Gtype):

SGs := SGs union {p}:

od:

# sort SGs by cardinality

SGs := sort(SGs,’length’):

end:

2.4.2. Distinguished γ’s. Now we turn out attention to parameterizing the distinguished parabolics of a
semisimple Lie algebra. Since we are most interested in the case when the semisimple Lie algebra is the
semisimple part of a Levi subalgebra l of some other Lie algebra, we may as well use l to indicate the
semisimple algebra in which the distinguished parabolics live.

Fact 2.9. Let g be a semisimple Lie algebra with Cartan subalgebra h and simple root system Π. For any
subset γ = {i1, . . . , ik} ⊂ Π, let

∆c = {λ ∈ spanZ (αi1 , . . . , αik)}
and set pγ = lγ + uγ where

lγ = h +
∑
α∈∆γ

gα

uγ =
∑

α∈∆+−∆γ

gα

Then the correspondence

2Π → {conjugacy classes of parabolic subalgebras} ; 2Π 3 γ → G · pγ

is a bijection.
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We thus have an extremely simple combinatorial parameterization of conjugacy classes of parabolic subal-
gebras. What we need is a simple test to figure out which of these parabolic subalgebras is distinguished.

To do this we first note that every root α in ∆+ −∆γ has at least one simple root component outside of γ
and because of this is α is the root corresponding to a root vector in [uγ , uγ ] if and only if α has at least
two simple root components outside of γ. Since each root space is 1-dimensional

dim (uγ/ [uγ , uγ ]) = #
{

roots in ∆+ −∆c with exactly one simple root component outside of γ
}

On the other hand,
dim (lγ) = rnk (g) + |∆γ |

So if we set

n1 (γ,Π) ≡ rnk (g) + |∆γ |
n2 (γ,Π) ≡ #

{
roots in ∆+ −∆c with exactly one simple root component outside of γ

}
the a parabolic subalgebra pγ will be distinguished in g if and only if n1 (γ) = n2 (γ).

The construction of the set BC of combinatorial Bala-Carter parameters. One first constructs a set Ψ of
standard Γ’s. Γ ∈ Ψ will be in a one-to-one correspondence with G-conjugacy classes of Levi subalgebras
via the correspondence

Γ→ lΓ

Next, for each Γ ∈ Ψ we run through the power set of Γ and look for distinguished γ inside Γ, that is to
say, we identify the subsets γ of Γ for which

(1) n1 (γ,Γ) = n2 (γ,Γ)

The pairs (Γ, γ) so obtained will constitute the set BC. We remarked that the condition (1) is also easily
checked using John Stembridge’s Coxeter package.

DistinguishedTest := proc(gamma,Gamma,Gt)

local i,SR,LB,lb,gc,PR,pr,n1,n2,x,q:

if gamma = [] then RETURN(1): fi:

SR := coxeter[base](Gt):

LB := [seq(SR[op(i,Gamma)],i=1..nops(Gamma))]:

lb := [seq(SR[op(i,gamma)],i=1..nops(gamma))]:

gc := []:

for i from 1 to nops(LB) do

if not member(op(i,Gamma),convert(gamma,set)) then

gc := [op(gc),i]:

fi:

od:

PR := coxeter[pos_roots](LB):

pr := coxeter[pos_roots](lb):

n1 := 2*nops(pr) + Rank(LB):

n2 := 0:

for i from 1 to nops(PR) do

x := coxeter[root_coords](op(i,PR),LB):

q := add(x[op(j,gc)],j=1..nops(gc)):

if q = 1 then

n2 := n2+1:

fi:

od:

if n1 = n2 then

RETURN(1):

else

RETURN(0)

fi:
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end:

Obviously, via this construction we have

Theorem 2.10. The pairs (Γ, γ) ∈ BC are in one-to-one correspondence with G-conjugacy classes of pairs
(l, pl) where l is a Levi subalgebra of g and pl is a distinguished parabolic subalgebra of l. Moreover, the
pairs (Γ, γ) ∈ BC parameterize the nilpotent orbits of g. The correspondence is given by

(Γ, γ)→ incglΓ

(
indlΓlγ (0)

)
2.5. CBC diagrams. A modified Dynkin diagram provides a succinct way of specifying the combinatorial
Bala-Carter parameters (Γ, γ) of nilpotent orbit O[Γ,γ] in g. One starts with the Dynkin diagram for g using
open circles at each node. The nodes corresponding to the indices in γ are then denoted by asterixs and
the remaining nodes in Γ are shaded black. We call these gadgets BC diagrams. In Appendix A we give
the CBC diagrams of the nilpotent orbits of the exceptional Lie algebras. Below we’ll give simple recipes
for going back and forth between CBC diagrams and the partition parametization of nilpotent orbits of the
classical Lie algebras.

2.6. Connection with Partition Classification. As remarked above the partition classification scheme
is an extremely useful way of parameterizing the nilpotent orbits of a classical Lie algebra. It turns out
though that it is quite easy to go from our combinatorial Bala-Carter parameters to the corresponding
partition. So that the reader will bear with us for a moment, we should point out that while it takes a bit
of work to develop these recipes, they will be quite trivial to implement in practice.

Recall the orbit O(Γ,γ) is the inclusion (G-saturation) of a distinguished orbit OlΓ,γ inside a Levi subalgebra
lΓ of g. The parameter Γ is a subset of the simple roots Π that generate the semisimple part of the Levi
subalgebar lΓ and γ is a “distinguished” subset of Γ specifying a parabolic subalgebra of lΓ such that

OlΓ,γ = indlΓpγ (0)

is a distinguished nilpotent orbit in lΓ.

Now, on the level of representative elements, the inclusion of the distinguished orbit OlΓ,γ in lΓ into g is
quite literal. For the representative x ∈ OlΓ,γ ⊂ Nl is immediately interpretable as a representative element
of O(Γ,γ) ⊂ Ng. In terms of the defining matrix realization of g, the Levi subalgebra lΓ will correspond to
a certain diagonal block and a distinguished element of lΓ will simply look like 0 0 0

0 x 0
0 0 0

 , x a distinguished element in the block corresponding to lΓ

Now the partition classification parameterizes nilpotent orbits by the Jordan canonical form of representative
elements. It is thus obvious that the partition p(Γ,γ) corresponding to the orbit O(Γ,γ) is should be the
partition corresponding to the orbit of x ∈ OlΓ,γ ⊂ lΓ with some 1’s added. The added 1’s just correspond
to the trivial Jordan blocks in g lying outside the lΓ block in g.

The first case to consider is when Γ = Π; that is to say, when lΓ = g, and O(Γ,γ) is simply a distinguished
orbit of g. For this we simply quote a result proved in Collingwood-McGovern.

Fact 2.11 (pg. 126 of [3]). The partitions corresponding to distinguished orbits in classical groups are as
follows:

sln There is only one distinguished orbit in sln. It is the principal orbit and the corresponding partition
is [n] .

so (2n+ 1) The distinguished orbits of so (2n+ 1) correspond to strictly decreasing partitions p = [p1, . . . , pk] of
2n+ 1 consisting of only odd parts.

sp (2n) The distinguished orbits of sp (2n) correspond to strictly decreasing partitions p = [p1, . . . , pk] of 2n
consisting of only even parts

so (2n) The distinguished orbits of so (2n) correspond to strictly decreasing partitions p = [p1, . . . , pk] of 2n
consisting of only odd parts
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We’ll now connect these characterizations of “distinguished partitions” with distinguished subsets γ of Π.
By definition, the distinguished orbit correponding to (Π, γ) in g is the Richardson orbit of the standard
parabolic pγ corresponding to the subset γ of the simple roots Π of g.

When γ = {} the parabolic p{} = t+n is the standard Borel subalgebra of g whose corresponding Richardson
orbit is the principal orbit. Below we list the partitions pprin corresponding to the principal orbits of classical
Lie algebras.

g pprin
sln [n]
so2n+1 [2n+ 1]
sp2n [2n]
so(2n) [2n− 1, 1]

For the remaining cases, when γ 6= {} we can assume that g 6= sln, because sln has only one distinguished
orbit, the principal orbit considered above.

In the midst of my December seminars I developed a recipe for the figuring out the partition corresponding
to the Richardson orbit

indglγ (0)

of a classical group. Rather than repeat that discussion, I’ll summarize the recipe, restricted to the case at
hand.

Proposition 2.12. Let Π be the simple roots of a classical Lie algebra of type so (2n+ 1), sp (2n), or so (2n)
ordered via Bourbaki conventions. Let γ ⊂ {1, 2, . . . , n} be the indices of a distinguished subset simple roots,
regarded as an ordered list of integers, and let pγ = lγ+uγ be the corresponding standard parabolic subalgebra
of g. The partition of PG corresponding to a distinguished Richardson orbit

indglγ (0)

can be obtained from γ as follows.

• Split γ into its G-tail γG and A-head γA; where

γG = maximal strictly consecutive subsequence of γ terminating with n

γA = subsequence of γ obtained by chopping off the G-tail from γ

• Let r be the length of γG. Let dG be the partition corresponding to the trivial representation of the

classical Lie algebra gr of the same Cartan type as g but of rank r. This will just be
[
(1)

dr
]

where

dr is the dimension of the standard representation of gr. If
r = 0 and g is of type so (2n+ 1) take dG = [1], otherwise if r = 0 take dG = [].

• Let m1, . . . ,mk be the lengths of the maximal strictly consecutive subsequences of γA and let

mA = [m1 + 1,m2 + 1, . . . ,mk + 1]

and set
dA = (mA)

t

• If necessary, extend either dA or dG with 0’s so that both dA and dG have the same length. Let k
denote this common length.

• Form the partition pγ = [p1, . . . , pk] by setting

pi = 2 (dA)i + (dG)i

This will automatically be a partition in P (dn), however, it need not satisfy the parity conditions
of PG.

• The partition corresponding to the Richardson orbit indglγ (0) will be the partition G-collapse (pγ)G
of pγ . (pγ)G is by definition the (unique) maximal (w.r.t. to dominance ordering of partitions)
partition in PG that is dominated by pγ .

Remark 2.13. To get the partition corresponding to an arbitrary Richardson orbit (as opposed to a distin-
guished Richardson orbit) one just needs to extend the above recipe by one more step; taking the corre-
sponding G-collapse of pγ . In restricting to distinguished Richardson orbits, we also avoided the labeling
issues associated with the even-even Richardson orbits of so (2n).
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In Appendix B we provide a table listing the CBC diagrams (from which the γ’s can be read) and the
partitions of the distiguished orbits of each classical Lie algebra of rank ≤ 8.

Next, we consider the cases when Γ is a proper subset of Π (and lΓ is proper Levi subalgebra of g) and we’ll
proceed case-by-case for each Cartan type.

2.6.1. sln. The CBCPs for sln are always of the form [Γ, []] ; since all the Levis of sln are direct sums of
glk’s and the only distinguished orbit in a glk is the principal orbit. Let mΓ = [m1, . . . ,mk] be the lengths
of the strictly consecutive subsequences in Γ: For example, if

Γ = [1, 2, 3, 5, 6, 8, 10]

then

mΓ = [3, 2, 1, 1]

The partition corresponding to O[Γ,[]] is obtained by adding 1 to each entry in mΓ and then adjoining
sufficiently many 1’s at the end so that the sum of the entries is n+ 1. In this way, one obtains a partition
pΓ of n + 1. The partition corresponding to the orbit O[Γ,[]] is the partition pΓ. This works because a
maximal strictly consecutive subsequence of length m in Γ corresponds to an slm+1 summand in lΓ. Thus,

mΓ = [m1, . . . ,mk] =⇒ lΓ = glm1+1 ⊕ glm2+1 ⊕ · · · ⊕ glmk+1

Embedding the principle orbits (the only distinguished orbits) for these glmi+1blocks into sln will produce
a element of sln whose Jordan form consists of Jordan blocks of size m1 +1, m2 +1, . . . ,mk+1 and however
many (trivial) Jordan blocks of size 1 it takes the fill the rest of the representative matrix in sln with 0’s.

We remark that this is even simpler than the recipe (due to Kraft, Ozeki and Wakimoto) for finding the
partition for a Richardson orbit in SLn+1 corresponding to the Levi subalgebra of sln+1 specified by Γ.
(See, e.g., page 112 of [3]. For we don’t need to utilize the partition transpose map. The reason for the
simplification is that we are including principal orbits of Levi subalgebras rather than inducing trivial orbits
of Levi subalgebras (as in the Kraft, Ozeki, Wakimoto situation). Of course, the operation of including
principal orbits of a Levi is naturally dual to the operation of inducing its trivial orbit (in the framework of
Barbasch-Vogan). And in the partition classification of nilpotent orbits for An, where every orbit is both a
“principal include” and a Richardon orbit, this duality between “principal includes” and Richardson orbits
can be implemented via the transpose map.

The other classical groups are not much harder; however, the recipes require a wee bit of preparation.

Suppose g is of type Bn, Cn or Dn. Then any Levi subalgebra of g is of the form3

l = gli1 + gli2 + · · ·+ glik + gr

where gr is of the same Cartan type as g but of rank r, and one has

dr + 2i1 + · · ·+ 2ik = dn

Here dn denotes the dimension of the standard representation of g (when rnk (g) = n).

To see how this comes about suppose that Γ is given as a ordered list of integers between 1 and n = rnk (g) ,
and that moreover suppose we are following Bourbaki conventions so that characteristic part of the Dynkin
diagram; the short simple root for so (2n+ 1), the long simple root for sp (2n) or the final split pair of
simple roots for so (2n) correspond to the last simple root, or last pair of simple roots for so (2n). If r is
the length of the longest strictly consecutive subsequence in Γ that terminates on n (r will be 0 if Γ does
not terminate with n), then there will be a summand of lΓ of the same Cartan type as g but of rank r. We
call that subsequence

[n− r, n− r + 1, · · · , n] ⊂ Γ

the G-tail ΓG of Γ. The A-head ΓA of Γ is will correspond to a series of glk summands of lΓ. Just as in
the case of sln above, the ranks of these glk summands can be obtained by figuring out the lengths of the
maximal strictly consecutive subsequences of ΓA, and increasing each of these by 1.

3If not already apparent, this will become so in the next paragraph.
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For example, if g = so (9) and Γ = [1, 2, 3, 6, 8, 9], we have

ΓG = [8, 9]

ΓA = [1, 2, 3, 6]

and

lΓ ≈ gl4 ⊕ gl2 ⊕ so (5)

The number r is just the cardinality of ΓG and the numbers i1, . . . , ik are just the lengths plus one of the
strictly consecutive subsequences of ΓA. (There is some additional fussing around for the case of Dn but
we’ll get to that in a second.)

Now recall that the nilpotent orbit O(Γ,γ) is simply the inclusion of the distinguished orbit OlΓ,γ in lΓ
corresponding to the distinguished subset γ ⊂ Γ. Since this inclusion is quite literal, a representative
x ∈ OlΓ,γ ⊂ Nl is immediately interpretable as a representative element of O(Γ,γ) ⊂ Ng. E.g., in terms of
the defining matrix realization of g, the Levi subalgebra lΓ will correspond to a certain diagonal block and
and are representative nilpotent x of O(Γ,γ) will be of the form 0 0 0

0 x̃ 0
0 0 0


where x̃ is a nilpotent matrix in the defining matrix realization of the (isomorphism class of the) semisimple
part of lΓ. Now the partition classification parameterizes nilpotent orbits by the Jordan canonical form of
representative elements. It is thus obvious that the partition p(Γ,γ) corresponding to the orbit O(Γ,γ) is
just the partition corresponding to the orbit of x̃ ∈ OlΓ,γ with some 1’s added corresponding to the trivial
Jordan blocks lying outside of lΓ in the natural embedding lΓ. In other words, the partition corresponding
to O(Γ,γ) ≡ incglΓ (OlΓ,γ) is just the partition corresponding to OlΓ,γ ⊂ lΓ padded with sufficiently many 1’s

to get a partition of dG. (It will turn out that partition so obtained will automatically satisfy the parity
condition of PG.)

We’ll now describe how to determine the partition pΓ,γ corresponding to a distinguished orbit OlΓ,γ in the
Levi lΓ. Recall that by breaking Γ up into its G-tail and A-head, we can realize lΓ as

lΓ = gli1 ⊕ · · · ⊕ glik ⊕ gr

Accordingly, a representative element x of a distinguished nilpotent orbit in lΓ will split across the various
summands of lΓ. In fact, writing

x = xi1 + xik + xr , xi1 ∈ gli1 , · · · , xik ∈ glik , xr ∈ gr

each of the “components” xi1 , . . . , xr will be a distinguished element of the corresponding summand of
lΓ. Moreover, the Jordan form of x will simply be a concatenation of the Jordan blocks corresponding
to xi1 , . . . , xr. And so the partition pΓ,γ will just be a concatenation of the partitions corresponding to
xi1 , . . . , xr.

Now if xij is a distinguished nilpotent element of a glij factor, then it must in fact correspond to a principal

nilpotent element of slij (for slk the only distinguished orbits are principal orbits). Thus, xij can be
represented as a sum of the root vectors corresponding to the simple roots of slij . These simple root vectors
will actually be strictly consecutive simple root vectors for g. Thus the contribution of xi1 to the partition
pΓ,γ will be the partition corresponding to the Jordan form of a strictly consecutive sum of simple roots
of g. Looking at any of the standard Chevalley bases for the defining representation of g one sees that the
Jordan form of a strictly consecutive sum of k simple roots (excluding the “characteristic simple root” αn
will not anyway appear in the A-head of Γ) of g will consist of two identical Jordan blocks of size k. Thus,
each component xij in a glij factor of lΓ will contribute a pair (ij , ij) to the partition pΓ,γ . This means

that if the lengths of the maximal strictly consecutive indices in the A-head of Γ are (m1, . . . ,mk) then the
contribution of the A-head to pΓ,γ will be

[m1 + 1,m1 + 1, . . . ,mk + 1,mk + 1]
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Let us now turn our attention to the contribution of the G-tail ΓΓ of Γ. Now it is actually in ΓG that the
distinguished subset γ ∈ Γ resides. So we need to figure out the partition corresponding to a distinguished
orbit (ΓG, γ) in lΓG . But this we have already done in Proposition 2.1.2.

We can now give the algorithm for attaching a partition in PG to a combinatorial Bala-Carter parameter
(Γ, γ) when G is of type so (2n+ 1), sp (2n). The case of so (2n) has a minor complication related to the
existence of even-even orbits. But we’ll soon get to that soon enough.

Proposition 2.14. Let (Γ, γ) be a combinatorial Bala-Carter parameter for nilpotent orbit of g = so (2n+ 1)
or sp (2n). Then the partition p(Γ,γ) corresponding corresponding to O(Γ,γ) ⊂ Ng is obtained as follows.

• Split Γ into its A-head ΓA and G-tail ΓG.
• Determine the lengths m1, . . . ,mk of the strictly consecutive subsequences of occuring in ΓA. Set

mA = [m1 + 1,m1 + 1,m2 + 1,m2 + 1, · · · ,mk + 1,mk + 1]

• Use the algorithm of Proposition 2.12 to determine the partition
(
p(ΓG,γ)

)
G

corresponding to the

distinguished Richardson orbit ind
lΓG
lγ

(0).

• Concatenate mA with
(
p(ΓG,γ)

)
G

and add as many 1’s as needed to the result so as to obtain finally
a partition of PG.

Example 2.15. so (9).

There are 13 possible combinatorial Bala-Carter parameters.

Diagram [Γ, γ] lΓ ΓA mA ΓG
(
p(ΓG,γ)

)
G

p(Γ,γ)

◦ − ◦ − ◦ =⇒ ◦ [[], []] 0 [] [] [] []
[
(1)

9
]

• − ◦ − ◦ =⇒ ◦ [[1] , []] A1 [1] [2, 2] [] []
[
(2)

2
, (1)

5
]

◦ − ◦ − ◦ =⇒ • [[4] , []] B1 [4] [] [4] [3]
[
3, (1)

6
]

• − ◦ − ◦ =⇒ • [[1, 4] , []] A1 +B1 [1] [2, 2] [4] [3]
[
3, (2)

2
, (1)

2
]

• − ◦ − • =⇒ ◦ [[1, 3] , []] 2A1 [1, 3] [2, 2, 2, 2] [] []
[
(2)

4
, 1
]

◦ − ◦ − • =⇒ • [[3, 4] , []] B2 [] [] [3, 4] [5]
[
5, (1)

4
]

• − • − ◦ =⇒ ◦ [[1, 2] , []] A2 [1, 2] [3, 3] [] []
[
(3)

2
, (1)

3
]

• − • − ◦ =⇒ • [[1, 2, 4] , []] A2 +B1 [1, 2] [3, 3] [4] [3]
[
(3)

3
]

• − ◦ − • =⇒ • [[1, 3, 4] , []] A1 +B2 [1] [2, 2] [3, 4] [5]
[
5, (2)

2
]

◦ − • − • =⇒ • [[2, 3, 4] , []] B3 [] [] [2, 3, 4] [7]
[
7, (1)

2
]

• − • − • =⇒ ◦ [[1, 2, 3] , []] A3 [1, 2, 3] [4, 4] [] []
[
(4)

2
, 1
]

• − ∗ − • =⇒ ∗ [[1, 2, 3, 4] , [2, 4]] B4 (a2) [] [] [1, 2, 3, 4] [5, 3, 1] [5, 3, 1]
• − • − • =⇒ • [[1, 2, 3, 4] , []] B4 [] [] [1, 2, 3, 4] [9] [9]

We now turn our attention to the case of so (2n). What’s peculiar for this case is that there are pairs
of non-conjugate Levi subalgebras lΓ, lΓ′ that are related by an outer automorphism of g arising from
the automorphism αn−1 ←→ αn of the Dynkin diagram. The pairs Γ,Γ′ for which this occurs can be
characterized as follows: for one of the pair, say, Γ, the penultimate simple root αn−1 appears but the last
simple root αn does not; the other member of the Γ′ is identical to Γ except that the last root αn appears
instead of αn−1. The corresponding Levi subalgebras lΓ and lΓ′ will both be isomorphic to a direct sum of
glii , the ranks of which being determined by the lengths of the maximal subsequences of strictly consecutive
subsequences.

Here is how we handle so (2n). If Γ is not of the form of one these special pairs (i.e. if Γ involves one of
and only one of the pair {αn−1, αn}) then we precede exactly as we did with the cases of so (2n+ 1) and
sp (2n).
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If Γ involves αn−1 but not αn, the corresponding Levi will be isomorphic to a direct sum of glk’s withe
the ranks k corresponding to the lengths (plus one) of the maximal strictly consecutive subsequences of Γ.
Following the same prescription as above we get

mA = [m1 + 1,m1 + 1, · · · ,mk + 1,mk + 1] ,
(
p(ΓG,γ)

)
= []

and we’ll end up with a very even partition whenever the integers mi + 1 are all even.

In fact, the only time we end up with an even-even partition coresponding to Γ is when there is a cor-
responding Γ′ differing from Γ by the substitution αn−1 → αn. This will be but then, regarding αn as
contiguous with αn−2 (as it is in the Dynkin diagram of so (2n)), the same algorithm will produce the same
even-even partition that is attached to the original Γ. It thus make sense to simply adopt the convention
that the even-even partition attached to Γ (the one not involving αn) is type I, while the even-even partition
corresponding to Γ′ (the one not involving αn−1) is said to be of type II..

Example 2.16. so (8)

Diagram [Γ, γ] lΓ ΓA mA ΓG
(
p(ΓG,γ)

)
p(Γ,γ)

[[], []] 0 [] [] [] []
[
(1)

8
]

[[1], []] A1 [1] [2, 2] [] []
[(

22
)
, (1)

4
]

[[1, 2], []] A2 [1, 2] [3, 3] [] []
[
(3)

2
, (1)

2
]

[[1, 3], []] 2A1 [1, 3] [2, 2, 2, 2] [] []
[
(2)

4
]I

[[1, 4], []] 2A1 [1, 4] [2, 2, 2, 2] [] []
[
(2)

4
]II

[[3, 4], []] D2 [] [] [3, 4] [4]
[
4, (1)

4
]

[[1, 3, 4], []] A1 +D2 [1] [2, 2] [3, 4] [4]
[
4, (2)

2
]

[[1, 2, 3], []] A3 [1, 2, 3] [4, 4] [] []
[
(4)

2
]I

[[1, 2, 4], []] A3 [1, 2, 4] [4, 4] [] []
[
(4)

2
]II

[[2, 3, 4], []] D3 [] [] [2, 3, 4] [5, 1]
[
5, (1)

3
]

[[1, 2, 3, 4], [2]] D4 (a1) [] [] [1, 2, 3, 4] [5, 3, 1] [5, 3, 1]
[[1, 2, 3, 4], []] D4 [] [] [1, 2, 3, 4] [7, 1] [7, 1]

Remark 2.17. Actually, once one knows the partitions corresponding to the distinguished orbits of Lie alge-
bras of same Cartan type as g it is easy to go directly from the CBC-diagram for [Γ, γ] to the corresponding
partition. Below we give a table of the distinguished orbits for the classical Lie algebras up to rank 8. In
fact, once one is able to recognize the partitions of distinguished orbits of the same Cartan type it is easy to
extract the CBC-diagram corresponding to a given partition. The following two examples utilize the tables
of CBC-diagrams and distinguished orbits given in the Appendix B.

Example 2.18. Find the partition corresponding to the CBC-diagram • − •− ◦− •− ◦− •− ∗− • =⇒ ∗.
Well the A-head is

• − • − ◦ − •  A2 +A1  [3, 3, 2, 2]

and the G-tail is

• − ∗ − • =⇒ ∗  B4 (a2)  [5, 3, 1]

So the corresponding partition should be

[5, 3, 1, 3, 3, 2, 2]  [5, 3, 3, 3, 2, 2, 1]
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Example 2.19. Find the CBC diagram corresponding to the partition [4, 4, 4, 3, 3, 2, 2, 2] ∈ Psp(24). Well,
we think of the parts as breaking up into pairs and singlets:

[4, 4, 4, 3, 3, 2, 2, 2]  ([4, 4] + [3, 3] + [2, 2]) + ([4] + [2])

 (A3 +A2 +A1) + (C3 (a1))

 • − • − • − ◦ − • − • − ◦ − • − ∗ ⇐= •
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