Lecture 6: Cells and Orbits

Birne Binegar

Department of Mathematics Oklahoma State University Stillwater, OK 74078, USA

Nankai Summer School in Representation Theory and Harmonic Analysis

June, 2008

The Atlas Setting

- $G_{\mathbb{R}}$: a real reductive Lie group realizable as the set of real points of a reductive algebraic group defined over \mathbb{R} ;
- $\widehat{G}_{\mathbb{R},adm}$: set of equivalence classes of irr admissible reps
- \mathcal{L}_{λ} : a set of Langlands parameters for irr admissible reps of **regular integral infinitesimal character** λ (a finite set).
- $\mathcal{HC}_{\lambda} = \{V_x = \pi_x|_{K\text{-finite}} \mid x \in \mathcal{L}_{\lambda}\}$: set of irreducible Harish-Chandra modules corresponding to the irr admissible reps $\pi_x \in \widehat{G}_{\mathbb{R}}$, $x \in \mathcal{L}_{\lambda}$.

The Atlas software catalogs and analyzes reps in \mathcal{HC}_{λ} .

Notation / Apparatus

- $\mathfrak{g} = Lie(G_{\mathbb{R}})_{\mathbb{C}}$; \mathfrak{h} , a CSA for \mathfrak{g} ; $\Delta = \Delta(\mathfrak{h}, \mathfrak{g})$, roots of \mathfrak{h} in \mathfrak{g} ; $\Pi \subset \Delta$, choice of simple roots in Δ ;
- \bullet G: adjoint group of \mathfrak{g}
- \bullet $\mathcal{N}_{\mathfrak{g}}$: nilpotent cone in \mathfrak{g} (identifying \mathfrak{g}^* with $\mathfrak{g})$
- Set $S \equiv \{\text{special nilpotent orbits}\}$
- $d: G \setminus \mathcal{N}_{\mathfrak{g}} \to G \setminus \mathcal{N}_{\mathfrak{g}}$: the Spaltenstein-Barbasch-Vogan duality map that restricts to an involution on $image(d) \equiv \mathcal{S} \equiv \text{set of special nilpotent orbits}$.

Cells of Harish-Chandra modules

Definition: Let $x, y \in \mathcal{HC}_{\lambda}$. Write $x \rightharpoonup y$ if there exists a f.d. rep F occurring in $T(\mathfrak{g})$ such that

y occurs as subquotient of $x \otimes F$

A **cell** of H-C modules is a maximal collection of $x \in \mathcal{HC}_{\lambda}$ such that

$$x, y \in C \implies x \rightharpoonup y \text{ and } y \rightharpoonup x$$

Basic facts:

- (i) $x \in \mathcal{HC}_{\lambda} \Rightarrow Ann_{U(\mathfrak{g})}(x)$ primitive ideal of reg int char $\Rightarrow gr(Ann(x)) \sim \text{ideal in } S(\mathfrak{g})$ $\Rightarrow \text{associated variety } AV(Ann(x)) \in \mathfrak{g}^*$ Fact: λ reg integral $\Rightarrow AV(Ann(x)) = \overline{\mathcal{O}}$ the closure of a special orbit
- (ii) $x, y \in C \Longrightarrow \mathcal{O}_x = \mathcal{O}_y \equiv \mathcal{O}_C$
- (iii) $x \in \mathcal{L}_{\lambda}$, with λ regular, integral inf. char. $\implies \mathcal{O}_{x}$ is **special** nilpotent orbit.

Problem: which cells of reps correspond to which special nilpotent orbits?

Key Fact:

The W-rep carried by a cell (induced from coherent cont rep on block) has a unique **special** constituent σ_C .

This coincides with special W-rep attached to $\mathcal{O}_{\mathcal{C}}$ via Springer correspondence.

Atlas Output

The Atlas software not only catalogs the KLV polynomials for the representations in \mathcal{L}_{ρ} , it computes the entire W-graph of \mathcal{L}_{ρ} : a weighted directed graph such that

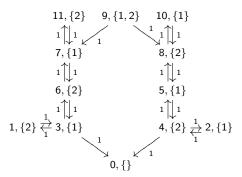
- vertices $\leftrightarrow x \in \mathcal{L}_{\rho}$
- vertex weights \leftrightarrow descent sets $\tau(x)$ of $x \in \mathcal{L}_{\rho}$ For each $x \in \mathcal{L}_{\lambda}$, $\tau(x)$ is a certain subset of Π $\tau(x)$ is the tau invariant of $Ann(V_x)$.
- edges \leftrightarrow relations $y \to x \equiv V_y$ occurs in $V_x \otimes \mathfrak{g}$
- ullet edge multiplicities: $mult(y o x) = ext{multiplicity of } V_y ext{ in } V_x \otimes \mathfrak{g}$

H-C cells correspond to bidirectionally connected subgraphs

Example: the big block of the split real form of G_2 .

element	descent set	(edge vertex, multiplicity)
0	{}	{}
1	{2}	{(3,1)}
2	{1}	{(4,1)}
3	{1}	$\{(0,1),(1,1),(6,1)\}$
4	{2}	$\{(0,1),(2,1),(5,1)\}$
5	{1}	$\{(4,1),(8,1)\}$
6	{2}	$\{(3,1),(7,1)\}$
7	{1}	{(6,1),(11,1)}
8	{2}	{(5,1),(10,1)}
9	{1,2}	$\{(7,1),(8,1)\}$
10	{1}	{(8,1)}
11	{2}	{(7,1)}
	0 1 2 3 4 5 6 7 8 9	1 {2} 2 {1} 3 {1} 4 {2} 5 {1} 6 {2} 7 {1} 8 {2} 9 {1,2} 10 {1}

The W-graph for this block thus looks like



Cell #	Members
0	0
1	1, 3, 6, 7, 11
2	1, 3, 6, 7, 11 2, 4, 5, 8, 10
3	9

The Spaltenstein-Vogan Criterion

Theorem. (Spaltenstein, Vogan) Suppose C is a cell of H-C modules with associated special nilpotent orbit \mathcal{O}_C and let $\mathfrak I$ be a (standard) Levi subalgebra of $\mathfrak g$. Then

$$\mathcal{O}_{\mathcal{C}} \subset \overline{ind_{\mathfrak{l}}^{\mathfrak{g}}(\mathbf{0}_{\mathfrak{l}})} \iff \exists x \in \mathcal{C} \ s.t. \ \Pi_{\mathfrak{l}} \subset \tau(x)$$

where $\Pi_{\mathfrak{l}}=$ the simple roots of $\mathfrak{l}.$ Here $\Pi_{\mathfrak{l}}\subset\Pi_{\mathfrak{g}}$ and

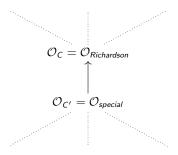
$$ind_{\mathfrak{l}}^{\mathfrak{g}}\left(\mathbf{0}_{\mathfrak{l}}\right)\equiv \text{ unique dense orbit in }G\cdot\mathfrak{n}$$

where ${\mathfrak n}$ is nilradical of any parabolic subalgebra of ${\mathfrak g}$ with Levi factor ${\mathfrak l}.$

Orbits of the form $ind_{\mathfrak{l}}^{\mathfrak{g}}\left(\mathbf{0}_{\mathfrak{l}}\right)$ are called *Richardson orbits*.

Upshot: tau invariants of a cell constrain which Richardson orbit closures can contain $\mathcal{O}_{\mathcal{C}}$

Problem: Every Richardson orbit is special, but not every special orbit is Richardson. How do we separate configurations like



S-V criterion would only tell us that both $\mathcal{O}_{\mathcal{C}}$ and $\mathcal{O}_{\mathcal{C}'}$ are contained in $\overline{\mathcal{O}_{Richardson}}$

Levi subalgebras and Richardson orbits

- $\Gamma \subset \Pi$: a subset of the simple roots.
- ι_Γ: standard Levi subalgebra attached to

$$\mathfrak{l}_{\Gamma} = \mathfrak{h} + \sum_{\alpha \in \langle \Gamma \rangle} \mathfrak{g}_{\alpha}$$

• $R_{\Gamma} = ind_{\Gamma}^{\mathfrak{g}} \left(\mathbf{0}_{\Gamma_{\Gamma}} \right)$: the Richardson orbit induced from the trivial orbit of a Levi subalgebra \mathfrak{l}_{Γ} of \mathfrak{g}

Fact: every special orbit \mathcal{O} is determined by

- (i) the Richardson orbits that contain \mathcal{O}
- (ii) the Richardon orbits that contain $d(\mathcal{O})$

David Vogan's Idea: The tau invariants of a cell should tell us which Richardson orbits contain $\mathcal{O}_{\mathcal{C}}$ and which Richardson orbits contain the SBV dual of $\mathcal{O}_{\mathcal{C}}$.

Tau signatures for cells

Set

$$\tau(C) \equiv \{\tau(x) \mid x \in C\}$$

Facts

- # distinct $\tau(C) = \#$ special nilpotent orbits
- Let

$$\tau^{\vee}(C) = \{\Pi - \tau(x) \mid x \in C\}$$

⇒ duality operation for tau sets.

Definition:

 $\Psi = \{\Gamma \subset \Pi\}$: a set of standard Γ 's: a collection of $\Gamma \in 2^{\Pi}$ such that

 $i: \Psi \leftrightarrow \{ \text{conjugacy classes of Levi subalebras} \}$

is a bijection. (E.g., choose std Γ 's to be first in the lexicographic ordering of their W-conj class)

Let $\Gamma, \Gamma' \in \Psi$ and let \mathfrak{l}_{Γ} and $\mathfrak{l}_{\Gamma'}$ be the corresponding standard Levi subalgebras of \mathfrak{g} . We shall say

$$\Gamma \leq \Gamma' \Longleftrightarrow \textit{ind}_{\mathfrak{l}_{\Gamma}}^{\mathfrak{g}}(\boldsymbol{0}) \subset \overline{\textit{ind}_{\mathfrak{l}_{\Gamma'}}^{\mathfrak{g}}(\boldsymbol{0})}$$

Remark: this ordering tends to reverse the ordering by cardinality.

Definition: The **tau signature** of an H-C cell *C* is the pair

$$au_{\mathsf{sig}}(\mathsf{C}) \equiv \left(\mathsf{min}\left(au(\mathsf{C}) \cap \Psi
ight) \;,\; \mathsf{min}\left(au^{ee}(\mathsf{C}) \cap \Psi
ight)
ight)$$

Tau signatures for Special Orbits

Definition: Let \mathcal{O} be a special orbit. The *tau signature* of \mathcal{O} is the pair $(\tau(\mathcal{O}), \tau^{\vee}(\mathcal{O}))$ where

$$\begin{split} \tau\left(\mathcal{O}\right) &= \text{min}\left\{\Gamma \in \Psi \mid \mathcal{O} \subset \overline{\text{ind}_{\mathfrak{l}_{\Gamma}}^{\mathfrak{g}}\left(\boldsymbol{0}_{\mathfrak{l}_{\Gamma}}\right)}\right\} \\ \tau^{\vee}\left(\mathcal{O}\right) &= \text{min}\left\{\Gamma \in \Psi \mid d\left(\mathcal{O}\right) \subset \overline{\text{ind}_{\mathfrak{l}_{\Gamma}}^{\mathfrak{g}}\left(\boldsymbol{0}_{\mathfrak{l}_{\Gamma}}\right)}\right\} \end{split}$$

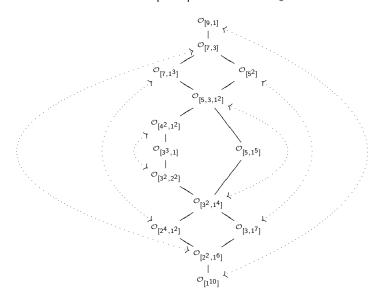
The point: we are using pairs of subsets of simple roots to tell us when a Richardson orbit closure can contain a special orbit (or its dual).

The same kind of pairs tells us when the orbit attached to a cell can be contained in Richardson orbit (or when the dual cell can be contained in the closure of Richardson orbit).

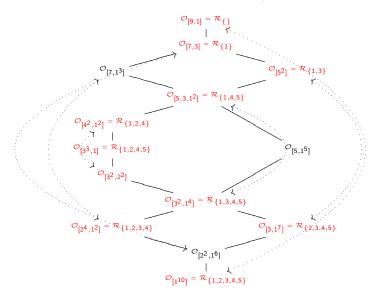
Corollary (to S-V criterion)

$$\mathcal{O}_{\mathcal{C}} = \mathcal{O} \quad \Longleftrightarrow \quad au_{sig}(\mathcal{C}) = au_{sig}(\mathcal{O})$$

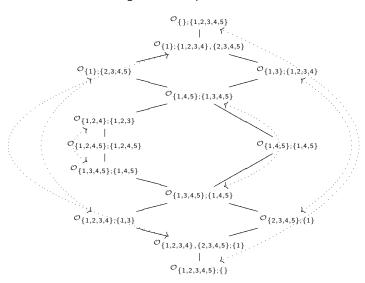
Example: Special Orbits of D_5



Richardson Orbits of D₅



Tau Signatures of Special Orbits of D₅



Tau signatures for cells in the big block of SO(5,5)

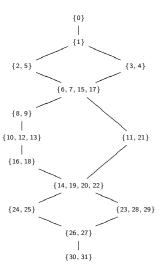
- ullet 365 representations with inf. char. ho in big block
- 32 cells in the big block

Output of extract-cells

```
// Individual cells.
// cell #0:
0[0]: {}
// cell #1:
0[1]: {2} --> 1.2
1[3]: {1} --> 0
2[5]: {3} --> 0.3.4
3[13]: {5} --> 2
4[14]: {4} --> 2
// cell #29:
0[328]: {1.2.4.5} --> 2.3
1[340]: {2.3.4.5} --> 2
2[358]: {1.3.4.5} --> 0.1
3[364]: {1.2.3} --> 0
// cell #30:
0[353]: {1,2,3,4,5}
// cell #31:
0[357]: {1,2,3,4,5}
```

Each of these coincides with the tau signature of a particular nilpotent orbit.

Cell-Orbit Correspondences for SO(5,5)



More Generally:

Exceptional Groups: tables by Spaltenstein list induced orbits, and Hasse diagrams.

- Tau signatures of special orbits can be done by hand.
- 1. Use Spaltenstein's tables to figure out which special orbits are Richardson orbits and to identify the std Γ 's corresponding to the corresponding Levi subalgebra.
- 2. Place the Richardson orbits in the Hasse diagram of special orbits, and then figure out the Γ parameters of the minimal Richardson orbits that contain a given special orbit and the minimal Richardson orbits that contain its Spaltenstein dual

Even E_8 can be done by hand.

Classical Groups:

Partition classification — closure relations

Just need to

- which partitions correspond to special orbits (easy recipes in Collingwood-McGovern)
- use dominance ordering of partitions to partial order special orbits
- use formulas in [C-M] to determine partitions corresponding to Richardson orbits for each $\Gamma \in \Psi$. Place these in the Hasse diagram of special orbits and at the same time partial order Ψ .
- ullet Use the partial ordering of Ψ to ascribe tau signatures to cells (employing atlas data)
- match orbit tau sigs to cell tau sigs

Conclusion:

- Can one actually identify even finer invariants?
 - Can one tell when $Ann(V_x) = Ann(V_y)$? (yes!).
 - What about the associated variety of V_x (union of $K_{\mathbb{C}}$ -orbits)?
- Are there representation theoretical intepretations of other combinatorial aspects of W-graphs?

Some References

- D. Barbasch and D. Vogan, Unipotent representations of complex semisimple groups, Ann. of Math 121 (1985), 41-110.
- D. Collingwood and W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.
- N. Spaltenstein, Classes unipotentes et sous-groups de Borel, Lec. Notes in Math. 946, Springer-Verlag, New York, 1982.
- N. Spaltenstein, A property of special representations of Weyl groups, J. Reine Angew. Math. 343 (1983), 212-220.
- D. Vogan, Representations of Real Reductive Lie Groups, Birkhäuser, Boston, 1981

Acknowledgements Supported by the National Science Foundation for support via the Atlas for Lie Groups and Representations FRG (DMS 0554278).