Lecture 7: HC Cells and Primitive Ideals

B. Binegar

Department of Mathematics Oklahoma State University Stillwater, OK 74078, USA

Nankai Summer School in Representation Theory and Harmonic Analysis

June, 2008

Primitive Ideals

Set

g : complex semisimple Lie algebra

 $U(\mathfrak{g})$: the universal enveloping algebra of \mathfrak{g} .

V: a left $U(\mathfrak{g})$ -module.

Ann(V): the **annihilator** of V, the two-sided ideal Ann(V) defined by

$$Ann(V) = \{x \in U(\mathfrak{g}) \mid xv = 0, \ \forall \ v \in V\}$$

Definition

A **primitive ideal** is the annihilator of an irreducible $U(\mathfrak{g})$ -module.

 $Prim(\mathfrak{g}) := \text{the set of primitive ideals of } U(\mathfrak{g}).$

If V is an irreducible $U(\mathfrak{g})$ -module, the center of $Z(\mathfrak{g})$ of $U(\mathfrak{g})$ acts by a character χ_{λ} ; and in fact,

$$Ann(V) \cap Z(\mathfrak{g}) = ker\chi_{\lambda}$$

Collecting together the set of primitive ideals having the same infinitesimal character we have

$$Prim\left(\mathfrak{g}
ight)=\coprod_{\lambda\in\mathfrak{h}^*/W}Prim\left(\mathfrak{g}
ight)_{\lambda}$$

where

$$Prim(\mathfrak{g})_{\lambda} = \{ primitive ideals with central character \lambda \}$$

Highest weight modules

Irr HC-modules \to a particular family of irr $U(\mathfrak{g})$ -modules that arises naturally in the study of $\widehat{G}_{\mathbb{R},adm}$

irr HW modules, however, turns out to be a much more convenient family for discussing primitive ideals.

Set

$$\mathfrak{b}=\mathfrak{h}+\mathfrak{n}$$
 : Borel subalgebra of \mathfrak{g}

$$\rho = \frac{1}{2} \sum_{\alpha \in \Delta^{+}(\mathfrak{g},\mathfrak{h})} \alpha$$

Definition

A $\mathfrak{g}\text{-module }V$ is said to be a **highest weight module** (w.r.t. \mathfrak{b}) if

$$\exists v \in V \ s.t.V = U(\mathfrak{g})v \ and \ Xv = 0 \ \forall \ X \in \mathfrak{n}$$

Irr HW modules have a uniform algebraic construction in terms of Verma modules. (analogous to construction of irreducible adm reps in terms of *standard* reps)

Verma modules

Definition

Let $\lambda \in \mathfrak{h}^*$. The **Verma module** $M(\lambda)$ of highest weight $\lambda + \rho$ is the left $U(\mathfrak{g})$ -module

$$U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda+\rho}$$

Here $\mathfrak{b}=\mathfrak{h}+\mathfrak{n}$ is a Borel subalgebra of \mathfrak{g} , and $\mathbb{C}_{\lambda+\rho}$ is the 1-dimensional representation of \mathfrak{b} defined by

$$(h+x) v = (\lambda + \rho) (h) v \quad \forall h \in \mathfrak{h}, x \in \mathfrak{n}, v \in \mathbb{C}_{\lambda + \rho}$$

Theorem

Let $\lambda \in \mathfrak{h}^*$.

- (i) The Verma module M (λ) has a unique irreducible quotient module L (λ) which is of highest weight $\lambda + \rho$.
- (ii) Every irreducible highest weight module is isomorphic to some $L(\lambda)$.

Duflo's theorem

Theorem (Duflo)

For $w \in W(\mathfrak{g}, \mathfrak{h})$ set

$$M_w = M(w\rho - \rho)$$

and let

 $L_w = unique irreducible quotient of M_w$

Then

$$\varphi: W \to Prim(\mathfrak{g})_{\mathfrak{g}}: w \to Ann(L_w)$$

is a surjection.

Parameterizing $Prim(\mathfrak{g})_{\rho}$ is tantamount to understanding the fiber of $\phi:W\to Prim(\mathfrak{g})_{\rho}$

Left Cells in W

Definition

Let \sim be the equivalence relation on W defined by

$$\mathbf{w} \sim \mathbf{w}' \iff \varphi(\mathbf{w}) = \varphi(\mathbf{w}')$$

The corresponding equivalence classes of elements of W are called **left cells** in W.

In order to make contact with the special representations of the Weyl group, we need a technical device due to Joseph.

- $U(\mathfrak{g})/J$ prime Noetherian ring
- $\Rightarrow U(\mathfrak{g})/J \approx Mat(n \times n, D)$ for some skew field D. $n \equiv GoldieRank(J)$.

Theorem

For $\mu \in \mathfrak{h}^*$ set

$$p(\mu) = GoldieRank(U(\mathfrak{g})/Ann(L(\mu)))$$

Then for $w \in W$, $p(w\mu)$ is a harmonic polynomial on $P(\Delta)^{++}$ (the dominant regular chamber). Moreover, if w, w' belong to the same left cell C

$$p_{w'} = p_w$$

each Goldie rank polynomial p_w is a harmonic polynomial on \mathfrak{h}^* , $\Rightarrow W$ acts p_w and thereby generates an irr rep W.

Definition

Fix a finite-dimensional representation σ of W. The $w \in W$ such

$$\mathbb{C}\langle W\cdot p_{w}\rangle \approx \sigma$$

comprise the **double cell** in W corresponding to $\sigma \in \widehat{W}$. The representations of W that arise in this fashion are called **special representations** of W.

Theorem

If w,w' belong to same double cell corresponding to a special representation $\sigma \in \widehat{W}$. Ann (L_w) and Ann $((L_{w'})$ share the same associated variety.

The unique dense orbit in $AV(Ann(L_w))$ is a special nilpotent orbit $\mathcal O$ and the W-rep attached $\mathcal O$ by the Springer correspondence coincides with σ .

Theorem

Let $C \subset W$ be a double cell and let $\sigma \in \widehat{W}$ be the assoc (special) W rep. Then

Card
$$\{Ann(L_w \mid w \in C\} \dim \sigma\}$$

Two pictures at inf char ρ

Primitive ideals and HW modules

$$\begin{array}{ccc} W & \{\mathit{Ann}(\mathit{L}_{\mathit{w}}) \mid \mathit{w} \in \mathit{W}\} & \mathsf{same} \; \mathsf{inf} \; \mathsf{char} \\ \cup & \cup & \cup \\ \mathit{C} : \mathit{dbl} \; \mathit{cell} & \{\mathit{Ann}(\mathit{L}_{\mathit{w}}) \mid \mathit{w} \in \mathit{C}\} & \mathsf{same} \; \mathsf{nilpotent} \; \mathsf{orbit} \\ \cup & \cup & \cup \\ \mathit{c} : \mathit{left} \; \mathit{cell} & \{\mathit{Ann}(\mathit{L}_{\mathit{w}}) \mid \mathit{w} \in \mathit{c}\} & \mathsf{same} \; \mathsf{primitive} \; \mathsf{ideal} \end{array}$$

HC modules

block of HC modules same inf char
$$\cup$$
 cell of HC modules same nilpotent orbit \cup same primitive ideal

Tau invariants

Let M_w be the Verma module of highest weight $w\rho - \rho$, containing $L(w\rho)$ as its irreducible quotient.

Let
$$I_w = Ann(L(w\rho))$$

 M_e corresponds to the Verma module with the trivial representation as its irreducible quotient. $Ann(L_e)$ is augmentation ideal, the maximal ideal in $Prim_\rho$

$$Ann(L_w) \subset Ann(L_e) \quad \forall \ w \in W$$

The other extreme is $I_o \equiv I_{w_o}$ which is the unique minimal primitive ideal of infinitesimal character ρ . (w_o is the longest element of W)

Let Π denote the simple roots of \mathfrak{g} . And for any $\alpha \in \Pi$, let

$$I_{\alpha} \equiv Ann\left(L_{-s_{\alpha}}\right) = Ann\left(M\left(-s_{\alpha}\rho\right)/M\left(-\rho\right)\right)$$

The primitive ideals I_{α} are "almost" minimal. The correspond to the primitive ideals that immediately cover (in the sense of posets) the minimal ideal I_{o}

Theorem

The primitive ideals I_{α} , $\alpha \in \Pi$, are all distinct from each other and I_{\circ} . Any primitive ideal strictly containing I_{\circ} contains at least one of the I_{α} .

Definition

The **tau invariant** of a primitive ideal I containing I_o is

$$\{s \in \Pi \mid I_s \subset I\}$$

Of course, $Ann(\pi) = Ann(\pi')$ means their tau invariants must coincide.

Tau invariants of the annihilators of HC-modules, though a weaker invariant than annihilators themselves, can at least be computed directly by atlas.

A partitioning of HC cells

Recall that the W-graph of a block induces the following graph on a cell: for each element $i \in C$ we attach

- a vertex v[i]
- a tau invariant $\tau[i] = \text{tau invariant of } Ann(\pi_i)$
- ullet a list of edges with multiplicities $e\left[i\right]=\left[\left(j_1,m_1
 ight),\left(j_2,m_d
 ight),\ldots,\left(j_k,m_k
 ight)
 ight]$

Since $\tau[i] = \tau[j]$ is a necessary condition for $Ann(\pi_i) = Ann(\pi_j)$ it makes sense to group together those cell elements whose vertices have the same tau invariants.

Thus, we define a partitioning P_1 of C by grouping together those vertices with the same tau-invariant.

Call such a collection a P_1 -subcell of C.

A partitioning of cells, cont's

Next for element i in any particular P_1 -subcell, attach the following second order tau invariant

$$\tau_2[i] = \{\tau[j] \mid j \in \text{edge vertices of } i\}$$

and say that two elements i, j belong to the same P_2 -subcell if

$$\tau_2[i] = \tau_2[j] \quad .$$

Similarly, set

$$\tau_{3}[i] = \{\tau_{2}[j] \mid j \in \text{ edge vertices of } i\}$$

and say that two elements i, j belong to the same P_3 -subcell if

$$\tau_3[i] = \tau_3[j]$$
 .

Eventually, since there are only a finite number of cell elements this iterative partitioning scheme must stabilize. Let P_{∞} denote the final stable partitioning (the first P_j for which $P_{j+1} = P_j$).

Lemma

The P_{∞} partitioning of a cell of Harish-Chandra modules is compatible with the partitioning of the cell into subcells consisting of representations with the same primitive ideal. In fact,

$$Ann(\pi) = Ann(\pi') \Rightarrow \pi \text{ and } \pi' \text{ live in same } P_{\infty}\text{-subcell.}$$

Theorem

Let C be any cell in any real form of any exceptional group G. Then the P_{∞} partitioning of C coincides precisely with the partitioning of the cell into sets irreducible Harish-Chandra modules sharing the same primitive ideal.

proof:

 $\#P_{\infty}$ -subcells = dim special W-rep attached to cell = max#primitive ideals in cell

See summary table "Cells, Orbits, and Weyl group Representations"