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1. THE PLOT SO FAR

Last time I introduced

e generalized Selberg integrals as integrals of the form

(1) Lnxrsm = / ® (x) (H x:_l (1- mi)s_1> H |lzi — l‘j|2fC dzy---dz,
Qn i=1

1<i<j<n

® being some symmetric polynomials on R™ and €2,, some fundamental domain for the action the
symmetric group S,.
e Jack symmetric functions J >(\a) as a particular basis of symmetric polynomials uniquely defined
by the requirements
- <JA(LO‘), J)(\a)> = 0if X # p (orthogonality) where the inner product (-, ), is defined by
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= order of the centralizer in &,, of a cycle of type A

- J)(\a) = ,<x Uy (triagularity)
— If [A| = d, then v (yay = d!
The Jack symmetric functions are eigenfunctions of the following differential operator
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with eigenvalue
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e Generalized hypergeometric functions
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2. KANEKO’S GENERALIZED SELBERG INTEGRAL

In this talk we shall be considering the generalized Selberg integral studied by Kaneko
(6) Sn,m ()\hAQv)\a/u';tlw"atm)

:/ H (xi_tk)u H xi\l (1_552‘))\2 H ‘xi_fﬂj‘)\ dxyi---dx,
[071]71,

1<i<n 1<i<n 1<i<j<n
i<k<m

for which the original Selberg integral corresponds to the special case of Sy, 0 (A1, A2, A, 0;0).

3. HOLONOMIC SYSTEM FOR Sy m

Let us denote by ® the integrand of (6):

P = H (x; — )" H M (1—a2)™ H |z — ;)

1<i<n 1<i<n 1<i<j<n
i<k<m

let w be the logarithmic 1-form?!
w = dlog ®
and let V,, be the covariant differentiation defined by
Vap=dp+wAyp
for any smooth (n — 1)-form ¢. One has

d(Pp) = (d®) N+ D (dp)

= <dg0+;(d<1>)/\g0>
= (Vuyp)

and so by Stokes theorem, and the fact that ® vanishes on each face of the cube [0, 1]

*) / @vwsoz/ d(@w)=/ By = 0
[0,1] [0,1]" a([01,]™)

as long as the left hand side exists.

n
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Kaneko utilizes the identity (*) for three easy choices of (n — 1)-forms ¢ and to provide identities certain
derivatives of I, ,,,. Let us denote by *dx; the (n — 1)-form

*dx, = (—1)i_1 dri N - ANdxi_1 N d$i+1 A ANdxy,

1 Explicitly,

n
w = dlog (H xf‘l (1- xi))‘2> H lz; — a1 H (zq — ti)*
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1<k<m
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and put

n
*
Yo = E dz;
i=1
n
= E Z; *d.ﬁl
i=1

n

wk:Z(fci—tk)fl “dw; ) 1<k<m
i=1

The covariant differentiations of these forms are

(3) Vo = Alzx “ X (A—w) e > (wi—te) M| 0
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1<k<m
-1 n
(4) Vopr = n(1+)\1—|—/\2—|—mu+n2)\>—)\22(1—z Yy |0
i=1 1<i<n ~t K
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1<i<j<n
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where 6 denotes the volume n-form: § = dxy A --- A dx,,. For n-forms &, n, we write { ~nif £ —n =V, ,p
for some (n — 1)-form . It follows from (3) and (4) that
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And (4) leads directly to
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Substituting these into (5), we obtain

((**)) Vot~ (=1 (=) 2 =x > (@ —t) (a5 — 1))~
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On the other hand, once can easily show that
OSn.m (t) " 1
(7) Pl [ @S m-no
oty [0,1]" ;
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Suppose now that the ratio (u? — ) /24 equals (u— 1) / (=A); i.e., p =1 or p = —X\/2. From (*) we have

0= / OV i
[0,1]”

by (8), if we use (**) to expand the right hand side, the first two sums add up to a constant multiple of
02Sy.m (t) /Ot2. Hence, by virtue of (7) and (8), taking ¢y for ¢ of (2) yields a partial differential equation
of Sp.m (t) for each k. Moreover, its principle part contains only 825, ,,, (t) /0t;. We thus have.

Theorem 3.1. Assume p =1 or p = —A/2. Then Spm (A1, A2, A, ;1) satisfies the following holonomic
system

OF 1 1 OF
1 ti(l—ti)aF tj(l—tj)aF
- - _ S A =1,.
+Ol ; ti—tj 8tj ; ti—tj 8tj ’ ! ’ 1
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where, if p =1,
a=\/2
a=-n

b=(2/A) (M1 + A2 +m+1)
c=(2/A) (M +m)



and if p = —\/2

a=\/2

a=(A/2)n
b:—()\1+>\2—|—1)+()\/2)(m—n+1)
c=—-M+(/2)m

4. HYPERGEOMETRIC SOLUTION OF THE HOLONOMIC SYSTEM

Theorem 4.1. 2F1(a) (a,b; c;t) is the unique solution to each of the m differeential equations in the system
(9) subject to the following conditions:

e F(t) is a symmetric function of t1,...,tm
e F(t) is analytic at the origin with F (0) =1
Sketch of Proof.
Uniqueness:
Noting that a symmetric analytic solution of (9) must be expressible as a power series C [[r1,...,7,]] where

the r; are some rational basis for the symmetric polynomials, Kaneko changes variables ¢; — r; (t) where
7; (t) is the i*" elementary symmetric polynomial in t and makes an ansatz

F(t)= Z aury (t) ) T () =7y (8) o7, (1) ) a, €C
AeP(m)

R
and then shows that their is a total ordering < of the partitions A for which recursion relations for the
coefficients a,, take the form

R
ay = sum of a, with p < A

Solution in terms of hypergeometric functions:

Summing the equations in (9) one sees that a symmetric solution of (9) must satisfy
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Kaneko then establishes certain derivative identities for Jack symmetric functions? which allow him to
conclude that if one sets

= a a a‘M Al «
=3 Y ad’e o= S
d=0 |\|=d A A

and chooses the coefficients ¢ as
C) —

then F (x) satisfies (9) identically.

5. THE MAIN RESULT

Well, the main result is now sorta obvious as the Kaneko’s generalized Selberg integrals satisfies a certain
holonomic system of PDEs for which the generalized hypergeometric function is the unique symmetric
analytic solution satisfying F' (0) = 1. The only thing left is to verify that the generalized Selberg integral is
analytic at the origin and to determine appropriate multiplicative constant. However, the case when t = 0
corresponds to the original Selberg integral, which is known.

In addition, Kaneko gives a sort of Kummer formula allowing a slight extension of the obvious result.
Proposition 5.1. If F (t1,...,tm) is a solution of the system (9), then (t1 - tn,) " F (7", ... t;1) is also
a solution of the system obtained from (9) by replacing b by a—c+1+(m — 1) /a and ¢ by a—b+14+(m — 1) /a.
Thus, Kaneko obtains

Theorem 5.2. Let

m
Smm ()\1, )\2, )\,p,;t(m)) = / H (:ci — tk) (H .Z‘?l (1 — l‘i))\2> H |.%‘i — xj|/\ dX(n)
0" \ 1<i<n i=1 1<i<j<n
1<k<m
Then
2 2
Spm (A1, A2, A\ L b)) = C1 oF A/Q (—717)\()\1 +X+m+1)=n— LX (A1 +m);t(m)>
where

Cl = Sn,O ()\1 + m, )\2, )\)

2These identities are relatively straight-forward, the first is just the fact that the Jack symmetric functions are eigenfunctions

of
_%Z Z z

iz T ox;
The second that they are eigenfunctions of the Euler operator

And the third gives an expression for

in terms of generalized binomial coefficients.



Moreover,

—A/2
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[0,1] 11<§]§§n i=1 1<i<j<n

A A
= (4 2F12/>‘ <2n,2(n—1)+/\1;/\(n—1)+)\1+)\2—|—2;t(m))

where

Co = Sn0 (A1, A2, A)
6. DESSERT

Corollary 6.1. Let u be a partition and set

Iﬂz/ JQ/)‘ (HI)\I (1—a) 2) H |xiij|)‘ dx ()
(0,1

1<i<j<n

Then

1= J@ (1 ﬁr m/2+ D(i+M+n—i)A2+1D)T Ao+ (n—i)A/2+1)

Pl A2+ DT (i + A +Xo+(2n—i=1)1/2+2)

This is proved by simply plugging the generalized Cauchy identity

[[ (-t = ZJ(”‘) J”(tm)ﬁ
A I o

i<i<n
1<k<n

into the integrand in () and then equating the coefficients of J;(Lz/ ») (t(n)) that occur on both sides (recall
that 2F12/>‘ (t()) is defined as an expansion in the J;(f/)‘) (t(n))-

Thus, in just a couple lines one proves a famous conjecture of Macdonald, latter proved by Kadell. (At
the time of the conjecture it was known that there existed a family of symmetric functions with such a
closed integral formula, Macdonald conjectured that this family would be the Jack symmetric functions,
and Kadell proved it. This development took place from around 1986- 1996).



