
ON A CLASS OF MULTIPLICITY-FREE NILPOTENT
KC-ORBITS

B. BINEGAR

Abstract. Let G be a real, connected, noncompact, semisimple Lie group,

let KC be the complexification of a maximal compact subgroup K of G, and
let g = k + p be the corresponding Cartan decomposition of the complexified

Lie algebra of G. Sequences of strongly orthogonal noncompact weights are

constructed and classified for each real noncompact simple Lie group of clas-
sical type. We show that for each partial subsequence {γ1, . . . , γi} there is a

corresponding family of nilpotent KC-orbits in p, ordered by inclusion and such

that the representation of K on the ring of regular functions on each orbit is
multiplicity-free. The K-types of regular functions on the orbits and the regu-

lar functions on their closures are both explicitly identified and demonstrated
to coincide, with one exception in the Hermitian symmetric case. The classi-

fication presented also includes the specification of a base point for each orbit

and exhibits a corresponding system of restricted roots with multiplicities. A
formula for the leading term of the Hilbert polynomials corresponding to these

orbits is given. This formula, together with the restricted root data, allows

the determination of the dimensions of these orbits and the algebraic-geometric
degree of their closures. In an appendix, the location of these orbits within D.

King’s classification of spherical nilpotent orbits in complex symmetric spaces

is depicted via signed partitions and Hasse diagrams.

1. Introduction

An action of an algebraic reductive group G on an affine variety M is called
multiplicity-free if the multiplicity of any particular irreducible representation of
G in the space C [M ] of regular functions on M is at most one. In [Ka], Kac
provides a complete list of multiplicity-free actions for the situation where G is
a connected reductive algebraic group and M is a finite-dimensional vector space
upon which G acts by an irreducible representation. We remark that Kac initiated
this classification in order to understand the possibilities for the G0-orbits in gi,
where gi is ith homogeneous component of a Z-graded semisimple Lie algebra and
G0 is the adjoint group of g0.

In [KO], Kato and Ochiai develop a formula for the algebraic-geometric degree
of a multiplicity-free G-variety Y in the situation where G is a connected reductive
complex algebraic group, and Y is a closed G-stable subset of a finite-dimensional
vector space V carrying an irreducible, multiplicity-free representation of G and
such that the image of G in GL (V ) contains all nonzero scalar matrices. Kato
and Ochiai then proceed to explicitly evaluate their formula for the case when V is

Date: October 4, 2007.
The author gratefully acknowledges discussions with Don King and Kyo Nishiyama at the

Snowbird Conference on Representations of Real Reductive Groups, June, 2006. He also thanks
the National Science Foundation through the Atlas for Lie Groups FRG (DMS 0554278) for

support.
1



MULTIPLICITY-FREE KC-ORBITS 2

the holomorphic tangent space of a Hermitian symmetric space G/K regarded as a
representation of the complexification KC of K. In this last situation, there exists
a set of linearly independent dominant weights {ϕ1, . . . , ϕi} so that

C [Y ] ∼=
⊕

m∈Ni

Vm1ϕ1+···+miϕi

where Vm1ϕ1+···+miϕi
denotes the irreducible representation of K of highest weight

m1ϕ1 + · · · + miϕi and the sum is over all m-tuples of non-negative integers
(m1, . . . ,mi). Moreover, in the Hermitian symmetric situation, there is a natural
way of constructing the weights ϕj , j = 1, . . . , i from a subsequence {γ1, . . . , γi} of a
Harish-Chandra sequence {γ1, . . . , γn} of strongly orthogonal non-compact roots, as
well as an explicit accounting of the roots that contribute, via the Weyl dimension
formula, to the degree of the orbit. It happens that the contributing (restrictions
of) positive roots break up into two disjoint subsets

∆+
short =

{
1
2
γj | 1 ≤ j ≤ i

}
with a common multiplicity r

∆+
long =

{
1
2
γj −

1
2
γk | 1 ≤ j < k ≤ i

}
with a common multiplicity k

These circumstances allow Kato and Ochiai to reduce the problem of determining
the algebraic-geometric degree of Y to an application of the Selberg integral formula
([Se]).

From the “orbit philosophy” point of view in representation theory, there are
two other especially important, general cases of multiplicity-free actions: the case
when M is nilpotent Ad(g)-orbit in the Lie algebra of a complex semisimple Lie
algebra g for which a Borel subgroup of Ad(g) has a dense orbit, and the case when
M is an an irreducible component of the associated variety of a multiplicity-free
(g,KC)-module. The orbits in the first case are called spherical nilpotent orbits
and these have been studied and classified by Panyushev [Pa]. See also [KY], where
spherical nilpotent orbits for a complex Lie algebra are realized within the secant
variety attached to the adjoint variety of a simple complex Lie algebra.

The associated varieties in the second case correspond to multiplicity-free KC-
orbits in Np, the nilpotent cone in (g\k)∗ ∼= p. Such orbits are referred to as
spherical nilpotent orbits for the symmetric pair (g, k). These have been classified
by D. King ([Ki]). We remark that the varieties Y studied by Kato and Ochiai
can be viewed as a special cases (the Hermitian symmetric cases) of a spherical
nilpotent orbit for a symmetric pair. We note further the papers [N1], [N], [NO],
[NOT], [NOZ]; wherein the associated varieties of singular unitary representations
attached to certain dual pairs are shown to be multiplicity free. In the last three
papers, integral formulas for the Bernstein degrees of the representations are also
developed and in some cases explicitly computed. In particular, in [NOT] it is
observed that the explicit formulas for Bernstein degrees so obtained coincide with
the classical Giambelli formulas for the degrees of determinantal varieties. In fact,
such integral formulas for degrees are common to spherical varieties in general (
[Br1], [Br2] ).

In this paper, we reverse-engineer the results of Kato and Ochiai to obtain a
construction of a family of multiplicity-free KC-orbits in Np that is applicable for
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any noncompact semisimple Lie algebra g. However, instead of starting with KC-
orbits known to be multiplicity free, and looking for an associated sequence of
strongly orthogonal noncompact roots; we proceed as follows:

(1) In the context of an arbitrary connected noncompact real semisimple Lie
group G we introduce an algorithm for constructing sequences {γ1, . . . , γn}
of strongly orthogonal noncompact weights.

(2) We then attach to each subsequence {γ1, . . . , γi} a certain nilpotent element
Yi of p, and set Oi = KC · Yi. We show that the closure Oi of each such
orbit is multiplicity-free, and we explicitly identify the K-types of regular
functions on the closure Oi of Oi as

C
[
Oi

] ∼=⊕Va1γ1+···+aiγi

where the sum is over the ai ∈ N such that a1 ≥ a2 ≥ · · · ≥ ai ≥ 0.
(However, when the restricted root system is type Dn, and {γ1, . . . , γn} is
a sequence of maximal length, the bound on the last coefficient is actually
|an| ≥ 0.)

(3) We observe that the degree of homogeneity of a polynomial in Va1γ1+···+aiγi

is
∑i

j=1 aj , and thereby reproduce the canonical filtration of C
[
Oi

]
by

degree by setting

(1.1) C
[
Oi

]
`
∼=

⊕
a1≥a2≥···≥ai≥0P

aj≤`

Va1γ1+···+aiγi

Using the restricted root data obtained in §2 and the Weyl dimension for-
mula, we are then able to calculate the leading term of the correspond-
ing Hilbert polynomial and thereby obtain formulas for the dimension and
algebraic-geometric degree of Oi in the classical cases.

The organization of this paper is as follows. In §2 we define certain sequences
of strongly orthogonal noncompact weights. These sequences will provide the basic
substratum upon which everything else is pinned. Table 1 in that section lists,
for each real classical Lie group, the sequences of strongly orthogonal noncompact
weights of maximal length and the form of their restricted root systems (as defined
in that section).

In §3 we attach to each sequence of strongly orthogonal noncompact weights
Γ = {γ1, . . . , γn} a corresponding sequence {xi, hi, yi}, i = 1, . . . , n of mutually
centralizing normal S-triples. These in turn allow us to construct the “telescoping”
sequences of KC-orbits O1 ⊂ O2 ⊂ · · · ⊂ On which will be the principal objects of
study for the rest of the paper. We show that each orbit Oi is multiplicity-free and
determine the K-type decompositions of the rings of regular functions on Oi and
its closure.

We conclude §3 with two remarks; the first indicating where our family of nilpo-
tentKC-orbits sits within D. King’s [Ki] classification of nilpotent orbits for classical
symmetric pairs. The second remark sketches our plan to attach to such a family
of KC-orbits a corresponding family of unipotent representations. We note that
effectively this has already been achieved by Sahi in the situation where G is the
conformal group of a Euclidean [Sa1] or non-Euclidean [Sa2] real simple Jordan
algebra. We show in §3.1.2 how one can recover, in the context of an arbitrary
connected semisimple Lie group, nearly all of the structural niceties employed by
Sahi in [Sa2] to bring to light families of unitarizable unipotent representations
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residing within families of degenerate principal series representations attached to
corresponding families of nilpotent KC-orbits.

In §4 we utilize the K-type decompositions determined in §3 and along with the
forms of the restricted root systems given in Table 1 to obtain closed formulas for
the dimension and algebraic-geometric degrees of the closures of the orbits. We
thereby produce analogs of the formulas of Kato and Ochiai in the general setting
of noncompact classical Lie groups.

The multiplicity-free KC-orbits of real classical noncompact groups that we ob-
tain in this paper all lie within the King’s classification [Ki] of spherical nilpotent
orbits for symmetric pairs (and we hereby apologize for adopting a nomenclature
that might suggest otherwise). In an appendix, we illustrate via Hasse diagrams
how our orbits are situated amongst the other orbits in King’s classification. We
remark that the K-type decompositions for all the spherical orbits of the symmet-
ric pairs (U(p, p)/U(p)× U(p)) have recently been obtained by K. Nishiyama ([N])
using dual pair methods, while for the same symmetric pairs, our method yields
only the spherical orbits that reside along the outer edges of the corresponding
Hasse diagram.

2. Sequences of Strongly Orthogonal Noncompact Weights

Let G be a connected noncompact real semisimple Lie group. Let K be a max-
imal compact subgroup, θ the corresponding Cartan involution and g = k + p, the
corresponding Cartan decomposition of the complexification of the Lie algebra of
G. Choose a Cartan subalgebra t of k, and extend it to a θ-stable Cartan subalgebra
h = t + a of g. Choose a positive system ∆+ (t; k) for ∆ (t; k) and extend it to a
positive system ∆+ (h; g) of ∆ (h; g) in such a way that

α|t ∈ ∆+ (t; k) =⇒ α ∈ ∆+ (h; g) .

Let β̃ be a highest weight of an irreducible representation of K on p. We remark
that β is unique when g is simple not of Hermitian type. In the simple Hermitian
symmetric case, where p decomposes into a sum of two irreducibles, p = p+ + p−,
and one can take β to be the highest weight of the representation of K on p+ or
p−. We now construct sequences {γ1, . . . , γn} of strongly orthogonal noncompact
weights as follows.

• We set γ1 = β̃;
• γi+1 is determined from its predecessors {γ1, . . . , γi} by the requirements

(i) γi+1 is in the orbit of β̃ under the action of the Weyl group of K.
(ii) γi+1 is strongly orthogonal in g to each γj for j = 1, , . . . , i (meaning

there is no compact or noncompact weight vector of weight γi+1 ± γj

for j = 1, . . . , i.)
(iii) ωi+1 =

∑i+1
j=1 γj ∈ t∗ is dominant.

Of course, since dim p is finite, this constructive process will eventually terminate.
It turns out that, almost always, the maximal length of such a sequence is equal
to the lesser of the rank of K and the real rank of G. (See the remarks following
Table 1.)
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In Table 1 below we tabulate, for each real classical noncompact Lie group of
real rank ≥ 2, sequences Γ = {γ1, . . . , γn} of maximal length. (The real rank one
cases are excluded simply by virtue of their triviality: in these cases Γ =

{
β̃
}

.)
We also provide in the table the form of the restricted root systems for Γ. This

restricted root system is defined as follows. For each noncompact weight γi ∈ Γ we
can choose a representative nilpotent element xi in pγi , and then via a standard
construction, a normal S-triple {xi, hi, yi} where yi ∈ p−γi , hi ∈ t and

[xi, yi] = hi , [hi, xi] = 2xi , [hi, yi] = −2yi .

Set t1 = spanC (h1, . . . , hn) ⊂ k. The restricted root system Σ corresponding to Γ
is the set of t1-roots in k. In the table, the form of a restricted root system Σ is
indicated follows:

(2.1) Σ = (an)ma (An)mA (bn)mb (Cn)mC (dn)md (a11,+)m+ (a11,−)m−

means that the set of positive roots in Σ consists of roots of the form

• an =
{

1
2γi − 1

2γj | 1 ≤ i < j ≤ n
}
, each occurring with multiplicity ma;

• An = {γi − γj | 1 ≤ i < j ≤ n}, each occurring with multiplicity mA;
• bn =

{
1
2γi | 1 ≤ i ≤ n

}
, each occurring with multiplicity mb;

• Cn = {γi | 1 ≤ i ≤ n}, each occurring with multiplicity mC ;
• dn =

{
1
2γi ± 1

2γj | 1 ≤ i < j ≤ n
}
, each occurring with multiplicity md ;

• a11,+ =
{
±
(

1
2γ1 + 1

2γ2

)}
, each occuring with multiplicity m+; and

• a11,− =
{
±
(

1
2γ1 − 1

2γ2

)}
, each occuring with multiplicity m+.

We remark that ma 6= 0 or mA 6= 0 only in the Hermitian symmetric case,
and in this case md = 0.1 We specify in Table 1 the non-compact weights γi in
terms of a basis of fundamental weights of the semisimple part [K,K] of K and
the conventions of Bourbaki ([Bour]). When [K,K] has two factors, say for rank r
and s, we denote by ω1, . . . , ωr a basis (à la Bourbaki) for fundamental weights for
the first factor, and ωr+1, . . . , ωr+s a basis of fundamental weights for the second
factor.

When [K,K] has an SO (n) factor several idiosyncrasies occur which we shall
now describe in detail. First of all, we have to deal with the fact that SO (n) ∼ D[n

2 ]
when n is even and SO (n) ∼ B[n

2 ] when n is odd. It also turns out that, for even n,
we have two different ways of terminating maximal sequences of strongly orthogonal
noncompact weights (corresponding to the outer automorphism of Dn). We shall
employ the following shorthand to deal efficiently these variations. Let σn,± denote
the following sequences of weights (of SO (n)).

σn,± =

8<:
ω1 + ω2 if n = 4 ,
ω1, ω2 − ω1, . . . , ωk−1 + ωk − ωk−2, ±ωk ∓ ωk−1 if n = 2k > 4 ,
ω1, ω2 − ω1, . . . , −ωk−2 + ωk−1, 2ωk − ωk−1 if n = 2k + 1 .

We indicate by 2σn,±, the sequences 2ω1, 2ω2 − 2ω1, . . . , etc which occur in the
case of SL (n,R).

To describe the sequences for SO (p, q), p ≤ q, we first denote by σp,q,±,± the
sequence of

[
p
2

]
weights for SO (q)× SO (q) obtained by adding to each element of

1Note also that our mnemonic notation for restricted root systems is a bit misleading for the
types an and An since these are actually root systems of Cartan type A and rank n− 1.
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Table 1

G K Σ Γ

SL (n, R) SO (n)

`
d[n/2]

´1 if n is even`
b[n/2]

´1 `
d[n/2]

´1 if n is odd
2σ[n/2],±

SL (n, H) Sp (n)
`
C[n/2]

´3 `
d[n/2]

´4

γ1 = ω2
γi = ω2i − ω2i−2

γ[n/2] =


−ωn−2 + ωn if n is even
−ωn−3 + ωn−1 if n is odd

SU (p, q)
(2 ≤ p ≤ q)

S (U (p)× U (q)) (ap)2 (bp)q−p
γ1 = ω1 + ωp+q−1
γi = −ωi−1 + ωi + ωp+q−i−1 − ωp+q−i

γp = −ωp−1 + ωq − ωq−1
SO (2, q)
(q > 2)

S (O (2)×O (q)) (A2)
q−2 γ1 = ω1

γ2 = −ω1

SO (p, q) , I
(2 < p ≤ q)

S (O (p)×O (q))

„
bh

p
2

i«q−p+2δp
„

dh
p
2

i«2

σp,q,±,±

SO (p, q) , II
(2 < p ≤ q)

S (O (p)×O (q)) (a11,±)p−2 (a11,∓)q−2 τp,q,±

SO∗ (2n) U (n)

„
bh

n
2

i«2 „
dh

n
2

i«4
γ1 = ω1
γi = −ω2(i−1) + ω2i

γh
n
2

i =


−ωn−2 + ωn if n is even
−ωn−3 + ωn−1 if n is odd

Sp (n, R) U (n) (an)1
γ1 = 2ω1
γi = −2ωi−1 + 2ωi

γn = −2ωn−1

Sp (p, q)
(p ≤ q)

Sp (p)× Sp (q) (bp)2(q−p) (Cp)2 (dp)2
γ1 = ω1 + ωp+1
γi = −ωi−1 + ωi − ωp+i + ωp+i+1
γp = −ωp−1 + ωp − ω2p + ω2p+1

(The term δp that appears in the exponent of b[p/2] for type SO(p, q) is integer remainder of p when

divided by 2.)

the sequence σp,± the corresponding element in the sequence σq,±. Secondly, we
denote by τp,q,± the two-element sequences

τp,q,± = ω1 + ω[ p
2 ]+1 , ±ωi ∓ ω[ p

2 ]+1 .

The sequences of noncompact weights for SO (p, q) will then consist of the sequences
σp,q,±,± and τp,q,,±. Depending on the parities of p and q, in the SO (p, q) case,
3 < p ≤ q, there can be as many as six different sequences of noncompact weights,
or as few as three.

2.1. Remarks.

2.1.1. One could consider relaxing the requirement that each γi lie in the K-Weyl
orbit of the highest noncompact weight by instead stipulating that each γi is a
weight of the representation of K on p. This leads to more sequences of strongly
orthogonal noncompact weights, but it seems that the sequences don’t get any
longer and, moreover, our method of identifying the K-types supported on the clo-
sures of the orbits is not applicable for such sequences. In the Hermitian symmetric
case, where p is a direct sum of two irreducible representations of K, one could con-
sider utilizing weights from both summands to form strongly orthogonal sequences
of noncompact weights. This does lead to additional long sequences of strongly
orthogonal noncompact weights and, as K. Nishiyama has pointed out to us, the
corresponding sequences of KC-orbits may actually exhaust the spherical nilpotent
orbits for Hermitian symmetric pairs. However, for such sequences it is also difficult
to identify exactly which K-types appear in the ring of regular functions on the
closures of the corresponding KC-orbits.
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2.1.2. In all but the case of SU∗ (2n) the maximal number of elements in a sequence
of strongly orthogonal noncompact weights is equal to min (rank (G/K) , rank (K)).
This suggests a connection with the maximal number of commuting sl (2,R) sub-
algebras of gR = LieR(G).

Indeed, to each γi ∈ [γ1, . . . , γn] we have an associated normal triple {xi, hi, yi}.
In fact, one can arrange matters so that yi = xi and hi = −hi. In this case, the
real span of the Cayley transform

(2.2) cj : {xj , hj , yj} →
{

1
2

(xj + yj − ihj) ,−i (xj − yj) ,
1
2

(xj + yj + ihj)
}

will be a subalgebra si of gR that is isomorphic to sl (2,R) and moreover

[si, sj ] = 0 , i 6= j .

Since the semisimple element hi of the original triple {xi, hi, yi} lies in ikR and these
all commute we must have n ≤ rank (K). On the other hand, since the semisimple
element h′i of the Cayley transform of {xi, hi, yi} is a semisimple element of pR, we
must have n ≤ rank (G/K). And so it’s rather interesting that in all cases except
SU∗ (2n) we’re getting the maximal possible (from this simple argument) number
of commuting triples in gR. In the case of SU∗ (2n), however, the number of γi is[

n
2

]
, while rank (K) = n− 1 and rank (G/K) = n. We note that there is another

circumstance that distinguishes SU∗ (2n) from the other simple noncompact Lie
groups of classical type: in the case of SU∗ (2n) and only in the case of SU∗ (2n),
there are actually two weights in ∆ (h; g) that restrict to β̃ ∈ t∗; that is to say, for
SU∗ (2n), and only SU∗ (2n), there is a pair of complex roots β, θ∗β ∈ ∆ (h; g) such
that β|t = β̃ = θ∗β|t. Although, by and large, it is rare that β̃ ∈ t∗ corresponds to
a pair of θ-conjugate roots in ∆ (h; g) rather than a single imaginary root, in §3 we
posit both possibilities on an equal footing.

3. Families of multiplicity-free KC-orbits

Let G be a noncompact real semisimple Lie group and let Γ = {γ1, . . . , γn}
be a sequence of strongly orthogonal noncompact weights as constructed in the
preceding section. We’ll now associate to Γ a corresponding sequence {O1, . . . ,On}
of KC-orbits in Np.

We begin by choosing representative elements xi ∈ pγi . As these are nilpotent
elements of g, via a standard construction we can associate an S-triple; that is to
say, we can find elements hi, yi ∈ g so that for the triple {xi, hi, yi} the following
commutation relations are satisfied:

(3.1) [hi, xi] = 2xi, [hi, yi] = −2yi , [xi, yi] = hi .

In fact, we can choose yi ∈ p−γi
and hi ∈ t ⊂ k so that {xi, hi, yi} is a normal triple

in g ; that is to say, {xi, hi, yi} satisfy both (3.1) and

(3.2) θ (xi) = −xi , θ (yi) = −yi , θ (hi) = hi

and si = spanR (xi, hi, yi) is a θ-stable sl2-subalgebra of g isomorphic to sl (2,R).
Moreover, since the γi’s are strongly orthogonal, the corresponding si’s will be
mutually centralizing; i.e., [si, sj ] = 0 if i 6= j.
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We now set

Xi = x1 + x2 + · · ·+ xi ,

Hi = h1 + h2 + · · ·+ hi ,(3.3)
Yi = y1 + y2 + · · ·+ yi

and
Oi = KC · Yi ⊂ Np.

{Xi,Hi, Yi} is easily seen to be another normal S-triple in g. 2

We’ll now show that the orbits Oi, i = 1, . . . , n are all multiplicity-free.
To accomplish this, we need to first elaborate a bit more on the setup in §2.

Let G be a connected noncompact real semisimple Lie group. Let K be a maximal
compact subgroup, θ a corresponding Cartan involution and g = k + p, the cor-
responding Cartan decomposition of the complexification of the Lie algebra of G.
Choose a Cartan subalgebra t of k, and extend it to a θ-stable Cartan subalgebra
h = t + a of g. Choose a positive system ∆+ (t; k) for ∆ (t; k) and extend it to a
positive system ∆+ (h; g) of ∆ (h; g) in such a way that

α|t ∈ ∆+ (t; k) =⇒ α ∈ ∆+ (h; g) .

We adopt a Chevalley basis {Eα | α ∈ ∆ (h; g)} so that

[Eα, E−α] = Hα ,

[Eα, Eγ ] =
{
Nα,γEα+γ if α+ γ ∈ ∆ (h; g) ,

0 if α+ γ /∈ ∆ (h; g) ,
(3.4)

[Hα, Eγ ] = 〈α, γ〉Eγ .

and define the induced mapping θ∗ : ∆ (h; g) → ∆ (h; g) and numbers ρα by means
of the formulas

θHα = Hθ∗α ,

θEα = ραEθ∗α .

We set

∆0 = {α ∈ ∆ | θ∗α = α} = the set of pure imaginary roots ,

∆1 = {α ∈ ∆ | α /∈ ∆0} = the set of complex roots ,

and
∆0,± = {α ∈ ∆0 | θEα = ±Eα} .

∆0,+ and ∆0,− are, respectively, the sets of, compact imaginary roots and non-
compact imaginary roots. We remark that since we have set up h as a maximally
compact Cartan subalgebra, there are no real roots in ∆ (h; g).

2Note added in proof. After submitting this article, the author learned of a paper by Muller,
Rubenthaler and Schiffmann [MRS] wherein a similar construction of orbits is made. The situation
studied in that paper is where g is a complex semisimple Lie algebra with a Z grading of the form
g = g−1 ⊕ g0 ⊕ g1, and the orbits of the adjoint group of g0 in g1. As in the Kato-Ochiai [KO]
paper, however, sequences of strongly orthogonal weights appear there as an auxiliary device

arising from an underlying Hermitian-symmetric structure. By way of contrast, we remark that
in the present paper the sequences of strongly orthogonal roots are employed as a constructive
principle.
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Let β ∈ ∆ (h; g) be a root such that
(*)

(1− θ) gβ = peβ ≡ the highest weight space of the representation of K on p .

There are several situations that we shall reduce to two basic cases:

(i) β is a complex root;
(ii) β is a pure imaginary noncompact root.

When rank (g) = rank (k), all roots in ∆ (h; g) = ∆ (t; g) will be pure imaginary
and so β will be a non-compact imaginary root. When rank (g) > rank (k), β
will either be a non-compact pure imaginary root or there will be a θ∗-conjugate
pair of complex roots {β, θ∗β} sharing the property (*). In the latter case, even
though we make an initial choice for β, subsequent developments will be manifestly
independent of that choice.

Lemma 3.1. Suppose β is a complex root and β̃ = β|t is the highest weight of the
representation of K on p. Then both

[θE±β , E∓β ] = 0

and

[θE±β , E±β ] = 0 .

Proof. To prove the first, we note that

[θE±β , E∓β ] ∈ g±(θ∗β−β) .

However, ± (θ∗β − β) will be real root, but for our choice of h there are no real
roots, and so θE±β and E∓β must commute.

To prove the second relation, we set

kβ = (1 + θ)Eβ ∈ keβ ,

pβ = (1− θ)Eβ ∈ peβ .

Since kβ is positive root vector for K and pβ is the highest weight of the represen-
tation of K on p we must have

0 = [kβ , pβ ] = [(1 + θ)Eβ , (1− θ)Eβ ]

= [Eβ , Eβ ] + [θEβ , Eβ ]− [Eβ , θEβ ]− [θEβ , θEβ ]

= 2 [θEβ , Eβ ] .

Similarly, [k−β , p−β ] implies [θE−β , E−β ] = 0.
�

Lemma 3.2. Suppose β ∈ ∆ (h; g) is such that β̃ = β|t is a highest weight of the
representation of K on p. Let xβ , hβ , yβ be defined by

xβ = Eβ ,

hβ =
2

〈β, β〉
Hβ ,

yβ = E−β ,
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if β is pure imaginary, or

xβ = (1− θ)Eβ ,

hβ =
2

〈β, β〉
(1 + θ)Hβ ,

yβ =
2

〈β, β〉
(1− θ)Eβ

if β is complex. Then {xβ , hβ , yβ} is a normal S-triple in g and

(**) z ∈ p and [hβ , z] = −2z =⇒ z ∈ spanC (yβ) .

Proof. An obvious calculation using the commutation relations (3.4), and
Lemma 3.1 in the case when β is complex, confirms that

[hβ , xβ ] = 2xβ , [hβ , yβ ] = −2yβ , [xβ , yβ ] = hβ

and so {xβ , hβ , yβ} is an S-triple. It is also obvious that

θxβ = −xβ , θyβ = −yβ , θhβ = hβ

and so xβ , yβ ∈ p, hβ ∈ k; hence {xβ , hβ , yβ} is a normal S-triple. Of course, xβ

and yβ live, respectively, in the +2 and −2 eigenspaces of hβ .
To prove (**) we have to show that no other weight vector in p can live in the

−2-eigenspace of hβ . We shall handle the cases β is a complex root or a noncompact
imaginary root separately.

Case (i). Assume β is a non-compact complex root and set

kβ = (1 + θ)Eβ , k−β =
2

〈β, β〉
(1 + θ)E−β .

Then it is easy to check that {kβ , hβ , k−β} is a θ-stable S-triple in g with the
same semisimple element as that of {xβ , hβ , yβ}. Suppose α̃ ∈ t∗ is a weight of
the representation of k on p, and α̃ 6= ±β̃ = ± β|k. Having chosen a positive
system for ∆ (h; g) subordinate to that of ∆ (t; k), we can regard α̃ as, respectively,
a “positive” or “negative” weight of p, depending on whether α̃ = α|t for some
α ∈ ∆± (h; g). Assume α̃ is “positive”; then [kβ , z] ∈ peα+eβ = {0} since β̃ is the
highest weight of the representation of K on p, and [k−β , [k−β , z]] ∈ peα−2eβ = {0}
since −β is the lowest weight of p. A similar (albeit up-side-down) argument shows
that if α̃ is “negative”, then [k−β , z] = 0 = [kβ , [kβ , z]]. And so, in either case,
the representation of sl (2,R) generated by the action of k±β on z ∈ peα is at most
2-dimensional, and so the lowest possible eigenvalue of hβ is −1.

Case (ii). Assume β is a pure imaginary noncompact root. In this case, the
S-triple {xβ , hβ , yβ} is just a renormalization of the Weyl triple {Eβ ,Hβ , E−β}.
Since each weight α̃ of p either comes from a pair of θ∗-conjugate complex roots
α, θ∗α ∈ ∆1 (h; g) or corresponds more or less directly to a unique pure imaginary
non-compact root, it will suffice to show that for any root α ∈ ∆ (h; g) such that
α 6= ±β, the maximal length of a β-string through α is 2.

Suppose α is root in ∆+
1 (h; g) then [Eα, Eβ ] = 0, since otherwise α + β would

be a complex root and we’d have a root vector with a non-zero projection to p
and a weight higher than β. Therefore, for any root α ∈ ∆+

1 (h; g), α would have
to be at the top of a (perhaps trivial) β-string. And so the situation we have to
worry about when α ∈ ∆+

1 (h; g) is when the string is α, α− β, α− 2β or longer. If
α− 2β is a root, it must be a complex root and so (α− 2β)|t must be a t-weight
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of p. But (α− 2β)|t is a weight lower than −β, the lowest weight of p. Hence,
we have a contradiction if α− 2β ∈ ∆ (h, g). If α ∈ ∆−

1 (h; g), an analogous (albeit
upside-down) arguments show that neither α−β or α+2β can be roots in ∆ (h; g).

Our last concern then would be the possible existence of a β-string . . . , α −
β, α, α + β, . . . through a non-compact pure imaginary root α 6= −β such that
[hβ , Eα] = −2Eα. In this case we’d have [xβ , [xβ , Eα]] ∈ p2β+α, which is impossible
since β is the highest weight of p.

�

Corollary 3.3. If z ∈ p and [Hi, z] = −2z, then z ∈ spanC (y1, . . . , yi).

Proof. Since the weights γi are all in the Weyl group orbit of the highest weight
β̃ of p, for each i we can choose a positive systems so that xi is a highest weight
vector in p. It then follows from the preceding lemma, that for each i = 1, . . . , n,
the lowest eigenvalue of hi will be −2 and [hi, z] = −2z will imply that z ∈ Cyi.
Since the hi are simultaneously diagonalizable, we can conclude that the smallest
eigenvalue of Hi = h1 + · · ·+ hi will be −2 and that if [Hi, z] = −2z then we must
have z ∈ spanC (y1, . . . , yi). �

Let t1 = spanC (h1, . . . , hi) and let t0 be the orthogonal complement of t1 in t
(with respect to the Killing form). Let mi be the subalgebra of k generated by root
spaces kα such that α|t1 = 0.

Lemma 3.4. Let ni be the direct sum of the negative eigenspaces of ad (Hi) in k.
Then mi + ni ⊆ kYi .

Proof. Since −2 is the lowest eigenvalue of Hi, certainly ni ⊂ kYi . Suppose kα

is a root vector corresponding to a root space tα ⊂ mi. We then have [Hi, kα] = 0
and so kα will preserve the (−2)-eigenspace of Hi. By the preceding lemma

(−2) -eigenspace of Hi = spanC (y1, . . . , yi) .

Because the yj , j = 1, . . . , i are weight vectors corresponding to multiplicity-free
weights of p, we must have

[kα, yj ] = cyk for some k ∈ {1, . . . , i} − j and some c ∈ C .

But if c 6= 0, γk will not be strongly orthogonal to γj ; for otherwise we would have
γk − γj = α ∈ ∆ (t; k). We conclude that Yi commutes with every root vector in mi

and so, since mi is semisimple, [Yi,mi] = 0. �
It now follows readily from results of Servedio [Sev] and Kimel’fel’d-Vinberg [KV]

that the KC-orbit through Yi is multiplicity free. 3 However, we shall instead apply
algebraic Frobenius reciprocity; so that we can not only demonstrate that C

[
Oi

]
is multiplicity-free, but we can also identify the K-types.

Theorem 3.5 (Kostant, [Ko]). Suppose G is a reductive algebraic group and V is
an irreducible G-module. For x ∈ V, let Gx denote the stabilizer of x in G. If we
denote by Ox the G-orbit through x, and by C[Ox] the ring of everywhere-defined

3A little more explicitly, the argument would proceed as follows. It is easy to see that the

tangent space to Yi is generated by a parabolic subalgebra of k corresponding to the non-negative
eigenspaces of adkHi. The preceding lemma then allows one to whittle this parabolic down to a

Borel subalgebra. One then applies

Theorem ([Sev], [KV]) Let K be a connected reductive algebraic group acting on an irreducible
affine variety M . Then C [M ] is multiplicity-free if and only if there exists a Borel subgroup B ⊂ K

admitting an open orbit in M .
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rational functions on Ox, by Vλ, λ ∈ Ĝ, the representation space of an irreducible
finite-dimensional representation of G and by Ṽλ the dual module of Vλ, then

multiplicity of λ in C[Ox] = dim Ṽλ

Gx

where Ṽλ

Gx

is the space of vectors in Ṽλ that are fixed by Gx.

Remark: In the preceding theorem the stabilizer Gx of x need not be reductive.

Corollary 3.6. C[Oi] is multiplicity-free and Vλ is a K-type in C[Oi] then λ ∈
spanR (γ1, . . . , γi).

Proof. By Lemma 3.4 the stabilizer of Yi in k contains mi+ni. It is easy to see that
the semisimple element hj in the normal S-triple {xj , hj , yj} is an element of t such
that [hj , kα] = 〈α, γj〉kα for any root vector kα ∈ kα, α ∈ ∆ (t; k). Since the γi are
chosen such that each t-weight γ1+ · · ·+γi is dominant and since Hi ≡ h1+ · · ·+hi,
it follows that all the negative root vectors of k will be contained in mi +ni. Hence,

a nonzero element of Ṽλ

KYi

will be a lowest weight vector that is also mi-invariant.
Algebraic Frobenius reciprocity then implies that if a K-type Vλ appears in C[Oi]
then the lowest weight vector of Ṽλ must be mi-invariant. This in turn implies that
−λ (and so λ) is not supported on t0. Thus, we must have

λ = a1γ1 + · · ·+ aiγi ∈ t∗1 .

And, of course, since the space of lowest weight vectors in Ṽλ will be 1-dimensional,
algebraic Frobenius reciprocity also tells us that C[Oi] is multiplicity-free. �

Proposition 3.7. Let n = |Γ|. (i) If i < n, then Vλ is a K-type in C[Oi], if and
only if its highest weight is of the form

λ = a1γ1 + · · ·+ aiγi

with aj ∈ N and a1 ≥ a2 ≥ · · · ≥ ai ≥ 0. (ii) Vλ is a K-type in C[On], if and only
if λ is of the form

λ = a1γ1 + · · ·+ anγn

with aj ∈ Z and

a1 ≥ a2 ≥ · · · ≥ an−1 ≥ an , if Σ = (an)ma or (An)mA ;
a1 ≥ a2 ≥ · · · ≥ an−1 ≥ |an| ≥ 0 , if Σ = (dn)md ;
a1 ≥ a2 ≥ · · · ≥ an−1 ≥ an ≥ 0 , otherwise .

Proof. From the Corollary above, we know that if Vλ is a K-type in C[Oi] then
its highest weight must be of the form

λ = a1γ1 + · · ·+ aiγi

We first show that coefficients ak must be integers. Note that

exp (iπhj) · Yi = exp (−2iπ)Yi = Yi for 1 ≤ j ≤ i

and so kj ≡ exp (iπhj) ∈ KYi . On the other hand, λ = a1γ1 + · · · + aiγi and v−λ

is the lowest weight vector of Ṽλ we have

kj · v−λ = exp (−2iπaj) v−λ .

Thus, the lowest weight vector of Ṽλ will not be stabilized by ki ∈ KYi unless aj ∈ Z
for j = 1, . . . , i.
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We now to prove the necessity of the ordering of the coefficients ai. This is just
a consequence of requirement that the highest weight λ be dominant. Since, in all
cases, for all 1 ≤ j < k ≤ n,

γj − γk or
1
2
γi −

1
2
γj ∈ Σ+

The dominance condition on λ = a1γ1 + · · ·+ aiγi, leads to

aj ≥ aj+1 i = j = 1, . . . , n− 1

If the restricted root system Σ contains a dn factor, then we must have in addition

〈λ, γj + γk〉 ≥ 0

which, together with 〈λ, γn−1 − γn〉 ≥ 0, implies in particular that

an−1 ≥ |an| .

In all other cases, Σ contains either a bn or Cn factor, and this leads to the require-
ment that

〈λ, γi〉 ≥ 0 for all i = 1, . . . , n
which forces all the coefficients ai to be non-negative.

At this point we have seen that if λ is the highest weight of a K-type in C [Oi],
then (1) λ must lie in the span of the γj , j ≤ i, (2) the coefficients a1, . . . , ai of
λ with respect to γ1, . . . , γi must satisfy certain integrality conditions so that each
exp (2πhj) ∈ KYi acts trivially on the corresponding highest weight vector and (3)
the coefficients must be ordered in such a way that λ is dominant. What is not yet
clear is that these restrictions on λ are sufficient to place Vλ in C [Oi]. However,
it is easy to see that the integrality conditions we have imposed on λ are actually
stronger than those needed to guarantee that λ is a weight of a representation of
K. Thus, we have enumerated all possible finite dimensional representations of K
with a KYi-fixed vector. Sufficiency now follows from Theorem 3.5. �

The preceding proposition tells us exactly which K-types occur in the ring C[Oi].
However, we are actually most interested in the ring of regular functions C

[
Oi

]
on

the closure of the orbit. Clearly,

C
[
Oi

]
⊂ C[Oi] .

We will now show that each K-type Vλ occuring in C[Oi] also occurs in C
[
Oi

]
.

Theorem 3.8 (Kumar, [Ku]). Let g be a finite-dimensional semisimple Lie alge-
bra and let h be a Cartan subalgebra of g. Let Vλ denote the irreducible finite-
dimensional representation of g with highest weight λ. For any weight λ ∈ h∗, let λ
denote the unique dominant weight in the Weyl group orbit of λ. Then, for any pair
λ, µ of dominant weights and any w in the Weyl group of g, the irreducible g-module
Vλ+ωµ occurs with multiplicity exactly one in the g-submodule U (g) · (eλ ⊗ ewµ) of
Vλ⊗Vµ; where eλ and ewµ are, respectively, weight vectors in the λ-weight space of
Vλ and the wµ-weight space of Vµ).

Remark 3.9. The statement of the theorem is known as Kostant’s strengthened
Parthasarathy-Ranga Rao-Varadarajan conjecture.

Lemma 3.10. Let ωj = γ1 + γ2 + · · ·+ γj, 1 ≤ j ≤ i. Then the K-type Vωj
occurs

in Sj (p) and the monomial x1 · · ·xj ∈ Sj (p) has a non-trivial projection onto the
highest weight space of Vωj
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Proof. The case when j = 1 is trivial, since xi is a highest weight vector of p. We
now proceed by induction on i. And all that this requires is the preceding theorem
with the identification of eλ with the projection of x1 · · ·xj onto the highest weight
vector of Vωj

(the inductive hypothesis) and the identification of ewµ with xj+1

which, by our construction, is always extremal weight vector of p. �

Theorem 3.11. The K-type decomposition of C
[
Oi

]
is exactly

C
[
Oi

]
=
⊕
λ∈Λi

Vλ

where

Λi = {λ = a1γ1 + · · ·+ aiγi | aj ∈ N , a1 ≥ a2 ≥ · · · ≥ ai ≥ 0}

if i < n or Σ 6= (dn)md . If i = n and Σ = (dn)ma , then

Λ = {λ = a1γ1 + · · ·+ anγn | aj ∈ Z , a1 ≥ a2 ≥ · · · ≥ an−1 ≥ |an| ≥ 0} .

Proof. We have already seen that λ ∈ Λi is a necessary condition for a K-type
to be in C [Oi] ⊃ C

[
Oi

]
. What we must prohibit, or otherwise take into account, is

the existence of a rational function that is defined everywhere on Oi but does not
extend to the boundary of Oi; in particular, rational functions that are not defined
at 0.

On the other hand, if φ is a polynomial function on p that is supported at some
point on Oi then 0 6= φ|Oi

∈ C
[
Oi

]
. We now note that the monomials x1 · · ·xj are

supported at Yi; for

(x1 · · ·xj) (Yi) = 〈x1, Yi〉 · · · 〈xj , Yi〉 = 〈x1, y1 + · · ·+ yi〉 · · · 〈xj , y1 + · · ·+ yi〉
= 〈x1, y1〉 · · · 〈xj , yj〉
= 1 .

In fact, we can choose an orthogonal basis for p such that x1, . . . , xj , j ≤ i, are
the only coordinate functions supported at Yi. By the preceding lemma, for each
j = 1, . . . , i, there exists a (homogeneous) highest weight vector φωj

of Vωj
⊂ Sj(p)

of the form

φωj = x1 · · ·xj + (other terms with at least one factor not among x1, . . . , xi) .

(Note that by the homogeneity of φωi
and the linear independence of the weights

γ1, . . . , γi, we cannot have a factor xk, j < k ≤ i occurring in one of the “other
terms” without an accompanying coordinate outside of {x1, . . . , xi}.) The “other
terms” will thus die upon evaluation at Yi and so we must have

φωj
(Yi) = 1 for 1 ≤ j ≤ i .

But once we have the highest weight vectors of each Vωj
supported at Yi it is trivial

to show that the products of these highest weight vectors will remain highest weight
vectors and continue to be supported at Yi ∈ Oi. Thus, each of the K-types Vλ

with
λ ∈ Λ′i ≡ {α1ω1 + · · ·+ αiωi | αi ∈ N}

will be supported at Yi. We now observe Λi = Λ′i So each of the K-types specified
in the statement of the theorem definitely appears in C

[
Oi

]
. Comparing with
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Proposition 3.7, we can conclude that in fact so long as i 6= n and Σ 6= An or an,
we have

C
[
Oi

]
= C [Oi] =

⊕
λ∈Λi

Vλ

However, when i = n and Σ = An or an we seem to have K-types Vα1γ1+···+anγn

with a1 ≥ a2 ≥ · · · ≥ an and an < 0 appearing in C [On] that have not been
accounted for in C

[
On

]
. In fact, they do not occur in C

[
On

]
; yet they can never-

theless be easily taken into account.
Note that the restricted root system Σ is of type An or an only when G/K

is Hermitian symmetric (see also [Sa1]). When Sigma is of this form it is easy
to see that ωn = γ1 + · · · + γn ∈ t∗ is perpendicular to every root in ∆ (t; k),
being supported only on the center of k. The corresponding highest weight vector
φωn ∈ Sn (p) thus corresponds to a one-dimensional K-type which, as shown above,
does not vanish at Yn. Put another way, φωn

corresponds to a K-semi-invariant
polynomial that does not vanish at Yn ∈ On. But then it vanishes nowhere on On

(otherwise On would have a proper K-invariant subset). Yet being a homogeneous
polynomial of degree n, it certainly vanishes at 0 ∈ On. Now observe that if
λ = a1γ1 + · · · + anγn ∈ Λn, an ≥ 0, and φλ is a polynomial corresponding the
highest weight vector of Vλ ⊂ C

[
Oi

]
then

ψ = (φωn
)−s (φλ)

will be a rational function of highest weight (a1 − s) γ1 + · · · + (an − s) γn that
is everywhere defined on On but undefined at 0 if an − s < 0. Evidently, such
functions account for the highest weight vectors of all the K-types in C [On] that
have not already been shown to appear in C

[
On

]
. The statement of the theorem

thus provides a complete account of the K-types in C
[
Oi

]
, even when i = n and

Σ = An or an. �

3.1. Remarks.

3.1.1. Connection with spherical orbits for symmetric pairs. While our construction
always yields a spherical nilpotentKC-orbit in p in the sense of [Ki], our construction
falls short of producing all such orbits. For example, we cannot obtain any spherical
orbit whose closure is not a normal variety; for in our construction the ring of regular
functions on an orbit coincides with the ring of regular functions on its closure (well,
except in the Hermitian symmetric case where they nevertheless coincide up to a
character of the center of K). To indicate which spherical nilpotent orbits are
obtainable by our construction, we display in Appendix A how the orbits we have
constructed are situated within the Hasse diagrams depicting the closure relations
([D]) among the entire family of spherical nilpotent orbits as classifed by King
([Ki]).

From these diagrams one can understand the “range” of our construction in the
following way: if Γ = {γ1, . . . , γn} is a strongly orthogonal sequence of noncompact
weights, the corresponding orbit closures Oi are totally ordered by inclusion

{0} = O0 ⊂ O1 ⊂ O2 ⊂ · · · ⊂ On .

and are such that Oi = Oi+1−Oi+1. Such a sequence of orbits would correspond to
a chain in the Hasse diagram in which there are no branchings are encountered as
one descends from the top of the chain to the trivial orbit. Nevertheless, in several
cases our construction exhausts or nearly exhausts the set of spherical nilpotent
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orbits: for example, we get all the spherical orbits of SL(n,R), SL(n,H), and
SO(3, p); and all but two orbits for SO(2, p) and Sp(p, q).

3.1.2. Connection with unipotent representations. We can now describe in a little
more detail how we hope to attach unipotent (in the sense of [Vo], Conjecture 12.1)
representations to these orbits. In [Sa2], Siddhartha Sahi shows the existence of a
certain family of small unitary irreducible representations of the conformal groups
of simple non-Euclidean Jordan algebras. Deliberately putting aside the Jordan
theoretical underpinnings of these representations, one can say that the essential
representation-theoretical ingredients of Sahi’s construction and analysis are:

(i) the circumstance that each representation is realized as a constituent of a
non-unitary, degenerate, spherical principal series representation

I(s) = IndG
P=MAN (1⊗ esν ⊗ 1)

whose associated variety is the closure of a single, multiplicity-free KC-orbit
in p; and

(ii) the fact that there exists a w ∈ NK (a) such that both wPw−1 = P and
ad∗ (w) ν = −ν.

We remark that the second condition ensures that the underlying (g,K)-module
of I(s) can be endowed with a g-invariant (but possibly indefinite or degenerate)
Hermitian form ([KZ]), while the first condition allows Sahi to carry out an explicit
analysis of the action of p on K-types from which both signature characters and
reducibility conditions can be derived.

Using the results of §2 and §3, we can formulate a similar setup for any connected
semisimple Lie group, subsuming the situation of [Sa2] in a uniform manner. Let
G be such a group, Γ = [γ1, . . . , γn] a maximal sequence of strongly orthogonal
noncompact weights. As in Remark 2.1.2 we construct for each i = 1, . . . , n, a
normal S-triple {xi, hi, yi} such that xi ∈ pγi

, yi = −xi ∈ p−γi
, hi ∈ k. We set

Xn = x1 + · · ·+ xn , Hn = h1 + · · ·+ hn , Yn = y1 + · · ·+ yn

as in (3.3) and apply each of the (commuting) Cayley transforms (2.2) successively
to {Xn,Hn, Yn} to obtain a standard triple

{X ′
n,H

′
n, Y

′
n} =

{
1
2

(Xn + Yn − iHn) ,−i (Xn − Yn) ,
1
2

(Xn + Yn + iHn)
}

in real Lie algebra gR of G such that the semisimple element H ′
n is in pR and

θX ′
n = −Y ′n. Let

n = direct sum of positive eigenspaces of ad (H ′
n) in gR ,

l = 0-eigenspace of ad (H ′
n) in gR ,

a = (center of l) ∩ pR ,

m = orthogonal complement of a in l

and set

M = ZK (a) exp (m) ,

A = exp (a) ,

N = exp (n) .
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Then P = MAN is a (Langlands decomposition of a) parabolic subgroup of G.
Moreover, it happens that

spanR (h′1, . . . , h
′
n) ⊆ a .

Now let ν be the element of the real dual space a∗ of a such that

ν (H) = B0 (H ′
n,H) ∀ H ∈ a ,

where B0 (·, ·) is the Killing form on gR restricted to a. Finally, we set

w = exp
(π

2
(X ′

n − Y ′n)
)
∈ K .

It then happens that

w ∈ NK (a) , wPw−1 = P , Ad∗ (w) ν = −ν .
Thus, we have a natural means of attaching to our families of multiplicity-free KC-
orbits families of possibly unitarizable, degenerate principal series representations.

However, there is one more Jordan-theoretic device at play in Sahi’s paper;
and that is a generalized Capelli operator D1 that, for a particular value of the
parameter s ∈ R, intertwines I(s) with its Hermitian dual I(−s). And yet, even
this Capelli operator should be characterizable in purely representation-theoretic
terms as per [Bo]. In fact, we conjecture here there is there is a quasi-invariant
differential operator on C∞ (n) corresponding to the Cayley transform of a lowest
weight vector of the irreducible representation homogeneous summand of Sn (p) of
highest weight γ1 + · · · + γn that intertwines a I(s) with its Hermitian dual. In a
subsequent paper, we hope to confirm (or correct) this conjecture and to extend
the methods of [KS] and [Sa2] to study of the reducibility and signature characters
of the subrepresentations IP (s) associated with the orbits K · Yi.

4. Dimension and Degree of Oi

Let R =
⊕∞

n=0Rn be the polynomial ring C [x1, . . . , xn] regarded as a graded
commutative ring (the grading by degree of homogenity). If I ⊂ R is homogeneous
ideal then M = R/I is a graded R-module:

M =
∞⊕

n=0

Mn where Mn ≡ Rn/ (Rn ∩ I) .

Let Y be the corresponding affine variety. By a theorem of Hilbert and Serre, there
is a unique polynomial pY (t) such that

pY (t) =
t∑

k=0

dimC Mk for all sufficiently large t .

pY (t) is called the Hilbert polynomial of Y . When one writes

pY (t) = ctd +
(
terms of order td−1

)
the degree of the leading term is the dimension (often by definition) of Y and the
number

D =
c

d!
is the degree of Y . It turns out that D is always an integer and corresponds to
the number of points where the projectivization of Y meets a generic (n− d− 1)-
dimensional linear subspace of Pn−1.
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Now consider aKC-orbitOi associated to a sequence Γi = {γ1, . . . , γi} of strongly
orthogonal noncompact weights and the ring of regular functions C

[
Oi

]
on its

closure. We shall assume for ease of exposition that i < n = |Γ|. The cases when
i = n can be handled similarly; but not so uniformly. It follows from the proof of
Theorem 3.11 that a given K-type λ = a1γ1 + · · · + aiγi in C [Oi] is generated by
the action of k on

φλ = (φω1)
a1−a2 (φω2)

a2−a3 · · · (φωi
)ai

which is a homogeneous polynomial of degree (taking aj = 0 for j > i)

i∑
j=1

j (aj − aj+1) =
i∑

j=1

aj .

It follows that

pOi
(t) =

t∑
`=0

dimM` =
∑
λ∈Λt

dimVλ

where

Λt =

a1γ1 + · · ·+ aiγi | a1, . . . , ai ∈ N , a1 ≥ a2 ≥ · · · ≥ ai ≥ 0 ,
i∑

j=1

ai ≤ t

 .

Applying the Weyl dimension formula, we obtain

pOi
(t) =

∑
λ∈Λt

 ∏
α∈∆+(t;k)

〈λ+ ρK , α〉
〈ρK , α〉

 .

Now note that the factors 〈λ+ ρK , α〉 / 〈α, ρk〉 either reduce to factors of 1 (when
α ⊥ λ) or contribute factors of the form 〈λ, α〉 / 〈α, ρK〉 to the leading term of pOi

.
We thus need only account for the roots that have components along γ1, . . . , γi.
Let

∆+
i =

{
α ∈ ∆+ (t; k) | 〈α, γj〉 6= 0 for some j ∈ {1, . . . , i}

}
The leading term of the Hilbert polynomial for pOi

(t) is thus

LT
(
pOi

)
=

 ∏
α∈∆+

i

1
〈ρK , α〉

LT

∑
λ∈Λt

 ∏
α∈∆+

i

〈λ, α〉


To compute the products

∏
α∈∆+

i
〈λ, α〉, we just need to know Σ, the restricted

root systems with multiplicities associated with {γ1, . . . , γn}. Since each restricted
root will be of one of the types an, An, . . . , dn,and since the roots of each type share
a common multiplicity, we can write

∏
α∈∆+

i

〈λ, α〉 =

 ∏
α∈(an)+i

〈λ, α〉

ma
 ∏

α∈(An)+i

〈λ, α〉

mA

· · · · · ·

 ∏
α∈(dn)+i

〈λ, α〉

md



MULTIPLICITY-FREE KC-ORBITS 19

where

(an)+i =
{

1
2
γj −

1
2
γk | 1 ≤ j < k ≤ i

}
∪
{

1
2
γj −

1
2
γk | 1 ≤ j ≤ i < k ≤ n

}
,

(An)+i = {γj − γk | 1 ≤ j < k ≤ i} ∪ {γj − γk | 1 ≤ j ≤ i < k ≤ n} ,

(bn)+i =
{

1
2
γj | 1 ≤ j ≤ i

}
,

(Cn)+i = {γj | 1 ≤ j ≤ i} ,

(an)+i =
{

1
2
γj ±

1
2
γk | 1 ≤ j < k ≤ i

}
∪
{

1
2
γj ±

1
2
γk | 1 ≤ j ≤ i < k ≤ n

}
.

We thus have ∏
α∈(an)+i

〈λ, α〉

ma

=
(

1
2

)mai(2n−i−1)/2
 ∏

1≤j<k≤i

(aj − ak)ma

 ∏
1≤j≤i

(aj)
ma(n−i)

 ,

 ∏
α∈(An)+i

〈λ, α〉

mA

=

 ∏
1≤j≤i

(aj)
mA(n−i)

 ∏
1≤j<k≤i

(aj − ak)mA

 ,

 ∏
α∈(bn)+i

〈λ, α〉

mb

=
(

1
2

)imb

 ∏
1≤j≤i

(aj)
mb

 ,

 ∏
α∈(Cn)+i

〈λ, α〉

mC

=

 ∏
1≤j≤i

(aj)
mC

 ,

 ∏
α∈(dn)+i

〈λ, α〉

md

=
(

1
2

)mdi(2n−i−1)
 ∏

1≤j<k≤i

(aj + ak)md


×

 ∏
1≤j<k≤i

(aj − ak)md

 ∏
1≤j≤i

(aj)
2(n−i)md

 .

And so we get ∏
α∈∆+

i

〈λ, α〉

 =
(

1
2

) 1
2 i(2n−i−1)(ma+2md)+imb

 ∏
1≤j≤i

aj

mb+mC+(n−i)(ma+mA+2md)

×

 ∏
1≤j<k≤i

(aj − ak)

ma+mA
 ∏

1≤j<k≤i

(
a2

j − a2
k

)md

.

In summary,

Lemma 4.1.

LT
(
pOi

)
= ci LT

∑
λ∈Λt

 ∏
1≤j≤i

aj

q ∏
1≤j<k≤i

(aj − ak)

r ∏
1≤j<k≤i

(
a2

j − a2
k

)s
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where

ci =
1∏

α∈∆+
i
〈ρK , α〉

(
1
2

) 1
2 i(2n−i−1)(ma+2md)+imb

,

q = (n− i) (ma +mA + 2md) + (mb +mC) ,

r = ma +mA ,

s = md .

Next we observe that the sum over Λt can be carried out as an iterated sum of
the form ∑

λ∈Λt

(· · · ) =
t∑

a1=0

min(a1,t−a1)∑
a2=0

· · ·
min(ai−1,t−a1−···−ai−i)∑

ai=0

(· · · )

and that the quantity to be summed,

F (a) ≡

 i∏
j=1

(aj)
q

 ∏
1≤j<k≤i

(aj − ak)r (
a2

j − a2
k

)s
is homogeneous of degree

deg(F ) = qi+ i(i− 1)(r + 2s)/2

in the variables a1, . . . , ai.

Lemma 4.2. Suppose Ωt ⊂ Nn is a region of the form

Ωt = {a ∈ Nn | 0 ≤ a1 ≤ t , 0 ≤ a2 ≤ φ2 (t, a1) , · · · , 0 ≤ an ≤ φn (t, a1, . . . , an−1)} ,

where each φi is a homogeneous linear function of its arguments. Then for large t∑
a∈Ωt

am1
1 · · · amn

n =

∫ t

0

∫ φ2(t,x1)

0

· · ·
∫ φn(t,x1,...,xn−1)

0

xm1
1 · · ·xmn

n dxn · · · dx1 + lower order terms .

Proof. From Faulhaber’s formula [F]

t∑
i=0

tp =
1

p+ 1

p+1∑
k=1

(−1)δk,p

(
p+ 1
k

)
Bp+1−kt

k

(where δk,p is the Kronecker delta symbol,
(
a
b

)
is the usual binomial coefficients,

and Bq is the qth Bernoulli number) one sees that

Sp (t) ≡
t∑

i=0

ip =
1

p+ 1
tp+1 +

1
2
tp − p

12
tp−1 + · · ·

=
∫ t

0

xpdx+ lower order terms .

The result now follows from an easy computation and inductive argument. �
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Remark 4.3. Note that

P (t) =
∫ t

0

∫ φ2(t,x1)

0

· · ·
∫ φn(t,x1,...,xn−1)

0

xm1
1 · · ·xmn

n dxn · · · dx1

is a monomial of degree m1 + · · ·+mn + n in t. Its leading coefficient is thus

P (1) =
∫ 1

0

∫ φ2(1,x1)

0

· · ·
∫ φn(1,x1,...,xn−1)

0

xm1
1 · · ·xmn

n dxn · · · dx1 .

Thus if we set

Rt = {x ∈ Rn | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ φ2 (1, x1) , · · · , 0 ≤ xn ≤ φn (1, x1, . . . , xn−1)}

we have ∑
a∈Ωt

am1
1 · · · amn

n ≈
(∫

R1

xm1
1 · · ·xmn

n dnx

)
tm1+···+mn+n .

Proposition 4.4. Let

Sn,t =

{
x ∈ Rn | x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 ,

n∑
i=1

xi ≤ t

}
and

Λt = Sn,t ∩ Nn

If F (x1, . . . , xn) is homogeneous of degree d, then∑
a∈Λt

F (a) =

(∫
Sn,1

F (x) dxn · · · dx1

)
td+n + lower order terms .

Proof. We can decompose the sum over Λt into a sum of sums

∑
Λt

F (a1, · · · , an) =
N∑

i=1

∑
Λt,i

F (a1, · · · , an)

where each region Λt,i is a region of the elementary form considered in Lemma
(4.1). One can then apply the lemma and the subsequent remark to get

∑
Λt

F (a1, · · · , an) ≈
N∑

i=1

(∫
R1,i

F (x1, · · · , xn) dnx

)
td+n + lower order terms

and then reassemble the region Sn,1 from the regions R1,i to obtain the desired
result. �

Applying the preceding proposition to our formula for the Hilbert polynomial
pOi

(t), we can conclude:

Theorem 4.5. Let G be a semisimple Lie group, {γ1, . . . , γn} a maximal sequence
of strongly orthogonal noncompact weights, Σ the corresponding restricted root sys-
tem (specified as in (2.1)), and let Oi be the multiplicity-free KC-orbit associated
to a subsequence {γ1, . . . , γi}. The dimension of Oi is given by

dim (Oi) = i(q + 1) + i(i− 1)(r + 2s)/2
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Table 2

G dimOi q r s
SL (n,R) i

(
2
[

n
2

]
− i
)

2
([

n
2

]
− i
)

0 1
SL (n,H) 4i

(
2
[

n
2

]
− i
)

8
([

n
2

]
− i
)

+ 3 0 4
SU (p, q) i (p+ q − i) p+ q − 2i 2 0
SO (2, q) , q > 2 i (i (2− q) + q − 4) /2 (q − 2) (2− i) q − 2 0
SO (p, q) I , 2 < p ≤ q i (p+ q − 2i− 1) p+ q − 4i 0 2
SO∗(2n) i

(
8
[

n
2

]
− 4i− 1

)
8
([

n
2

]
− i
)

+ 2 0 4
Sp (n,R) i (2n− i+ 1) /2 n− i 1 0
Sp (p, q) 2i (p+ q − i+ 1) 2 (p+ q − 2i+ 1) 0 2

and its degree is given by

Deg
(
Oi

)
=

ci
dim (Oi)!

 ∏
α∈∆+(t;k)

1
〈ρK , α〉


×
∫
Si

 i∏
j=1

xi

q ∏
1≤j<k≤i

(xj − xk)

r ∏
1≤j<k≤i

(
x2

j − x2
k

)s

dix

where Si is the domain

Si =

x ∈ Ri | x1 ≥ x2 ≥ · · · ≥ xi ≥ 0 ,
i∑

j=1

xj ≤ 1


and the constants ci, q, r and s are as in Lemma 4.1 and Table 2 below.

Remark 4.6. From the data tabulated above, one finds that the formula for the
degree of Oi is either of the form

(4.1)
∫

Si

∏
j=1

xj

q ∏
1≤j<k≤i

(xj − xk)

r

dix

(which happens only when G/K is Hermitian symmetric), or

(4.2)
∫

Si

∏
j=1

xj

q ∏
1≤j<k≤i

(
x2

j − x2
k

)s

dix .

The first form is very much akin to the famous Selberg integral [Se]

Sn,r,s,t =
1
n!

∫
[0,1]n

(
n∏

i=1

xi

)s( n∏
i=1

(1− xi)

)t
 ∏

1≤i<j≤n

|xi − xj |

r

dnx .

Indeed, by setting t = 0 and making a change of variables ([M], pg. 286 ) (4.1)
can be explicitly evaluated using Selberg’s formula. The more generic case (4.2),
however, seems to be lacking an explicit evaluation. We do note, however, that
Nishiyama, Ochiai and Zhu [NOZ] encountered and evaluated certain integrals of
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the form (4.2) in their study of theta liftings of nilpotent orbits. In [B] we provide
several other methods of evaluating integrals of the general form (4.2).

Appendix A. Closure Relations for Spherical Nilpotent Orbits of
Classical Real Linear Groups

To indicate exactly which spherical orbits are constructible by our sequences of
strongly orthogonal noncompact weights, we display below the closure relations ([O]
, [D]) for the spherical orbits of classical real linear Lie groups([Ki]); or rather those
cases for which we’ve identified a nice pattern (the closure diagrams of SU (p, q)
and SO (p, q) get rather complicated as p and q increase). The double lines in
the diagram indicate the simple chains of spherical nilpotent orbits closures cor-
responding to sequences of strongly orthogonal noncompact weights (cf. Remark
2.1.3.). In the Hermitian symmetric cases we indicate both the chains lying in p+

and those lying in p−. Our notation for the orbits is somewhere between that of [Ki]
and [D]. Briefly, as in [Ki] we indicate particular orbits by expressions of the form
(±n1)m1(±n2)m2 · · · (±nk)mk , where a factor of the form (±ni)mi indicates the oc-
curance of a signed a row of alternating ’+’ and ’-’ signs, of length ni, beginning
with a ± sign, and occuring with multiplicity mi. However, Djokovic’s algorithm
makes use of unsigned rows (actually, unsigned “genes”) rather than rows that are
more commonly represented as even signed rows; we indicate such an unsigned row
of length n occuring with multiplicity m by a factor of the form (n)m. Thus, for
example,

(+3)2(2)(+1)2(−1) ∼

+ − +
+ − +

+
+
−

.

Figure 1. SL (n,R)

OI
(2)[n/2]

$,QQQQQ
QQQQQ

OII
(2)[n/2]

rz mmmmm
mmmmm

O(2)[n/2]−1(1)2

��
O(2)[n/2]−2(1)4

��
...

��
O(2)(1)n−2

��
O(1)n

n even

O(2)[n/2]

��
O(2)[n/2]−1(1)2

��
O(2)[n/2]−2(1)4

��
...

��
O(2)(1)n−2

��
O(1)n

n odd
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Figure 2. SU (2, q)

O(−3)2(−1)q−4

,,ZZZZZZZZZZZZZZZZZ

rrddddddddddddddddd

O(−3)(−2)(−1)q−3
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ttjjjjjjj
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px jjjjjj
jjjjjj

O(−2)(+1)(−1)q−1tt

&.TTTTTT
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px jjjjjj
jjjjjj

O(+1)2(−1)q

Figure 3. SL (n,H)

O(2)[n/2]

��
O(2)[n/2]−1(1)2

��
...

��
O(2)(1)n−2

��
O(1)n

n even

O(2)[n/2](1)

��
O(2)[n/2]−1(1)3

��
...

��
O(2)(1)n−2

��
O(1)n

n odd

Figure 4. SO (2, p) ; p > 4
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Figure 5. SO∗ (2n)
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where Or,s = O(+2)r(−2)s(1)n−2r−2s

Figure 6. Sp (n,R)
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where Or,s = O(+2)r(−2)s(+1)n−r−s(−1)n−r−s

Figure 7. Sp(p, q) p ≤ q
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