UMRK SQL Query
Enter or paste your SQL query into the entry box below.
Example:
SELECT wrep_data.common_name AS "Macdonald Rep" , ss_data.cartan_type AS "F4 Subsystem"
FROM ss_data , wrep_data
WHERE ss_data.g = wrep_data.g AND ss_data.macdonald_rep = wrep_data.cw_idx AND wrep_data.g='F4'
For information on how to construct SQL queries, see e.g.
http://www.postgresql.org/docs/8.1/static/sql.html
or
http://en.wikipedia.org/wiki/Sql
.
UMRK Tables and Fields
Below [TBW] stands for some document To Be Written.
For instructions on how to access the UMRK database, consult [TBW].
g_data
:
g
(text)
cartan_class
(text)
rank
(int)
ebase
(text)
cartan_matrix
(text)
inv_cartan_matrix
(text)
pos_roots
(text)
highest_root
(text)
rho
(text)
exponents
(text)
coxeter_number
(int)
dual_root_system
(text)
connection_index
(int)
exponents
(text)
order_of_weyl_group
(int)
idx_of_coxeter_elt
(text)
idx_of_longest_elt
(text)
admissible_graphs
(text)
orbit_data
id
(text)
orbit_idx
(int)
common_name
(text)
cbc_parameters
(text)
weighted_dynkin_diagram
(text)
springer_rep
(int)
dim
(int)
pi1
(text)
a
(text)
abar
(text)
orbits_immed_above
(text)
orbits_immed_below
(text)
spaltenstein_dual_orbit
(int)
barbasch_vogan_dual_orbit
(text)
special_orbit_above
(int)
producing_levi
(int)
producing_psilevis
(text)
inducing_levis
(text)
special_yn
(int)
richardson_yn
(int)
wrep_data
id
(text)
g
(text)
cw_idx
(int)
common_name
(text)
springer_parameters
(text)
orbit
(int)
local_system
(text)
dim
(int)
lowest_degree_of_fdp
(int)
fake_degree_poly_coeffs
(text)
generic_degree_poly_coeffs
(text)
dual_rep
(int)
special_rep_yn
(int)
orbit_rep_yn
(int)
macdonald_rep_yn
(int)
inducing_subsystems
(text)
irred_character
(text)
cell_id
(int)
ss_data
id
(text)
g
(text)
ss_idx
(int)
ibase
(text)
ebase
(text)
positive_roots
(text)
cartan_type
(text)
dim
(int)
coxeter_conj_class
(int)
macdonald_rep
(int)
levi_idx
(int)
psilevi_idx
(int)
closed_subsystem_yn
(int)
distinguished_subsets
(text)
bc_g_orbits
(text)
admissible_diagrams
(text)
res_matrix
(text)
adjoint_rep
(text)
lie_type
(text)
split_base
(text):
levi_data
id
(text)
g
(text)
levi_idx
(int)
ss_idx
(int)
ibase
(text)
ebase
(text)
dim
(int)
cartan_type
(text)
coxeter_conj_class
(int)
macdonald_rep
(int)
distinguished_subsets
(text)
bc_g_orbits
(text)
richardson_orbit
(int)
positive_roots
(text)
psilevi_data
id
(text)
g
(text)
levi_idx
(int)
ss_idx
(int)
ibase
(text)
ebase
(text)
dim
(int)
cartan_type
(text)
coxeter_conj_class
(int)
macdonald_rep
(int)
distinguished_subsets
(text)
bc_g_orbits
(text)
dj
(integer)
realform_data
id
(text)
rf_idx
(int)
g
(text)
g_R
(text)
K
(text)
K_R (text)
Krep_p
(text)
dim_p
(int)
krep_k
(text)
dim_k
(int)
vogan_diagram
(text)
satake_diagram
(text)
rel_root_sys
(text)
real_rank
(int)
inner_class
(int)
compact_yn
(int)
split_yn
(int)
quasisplit_yn
(int)
equalrank_yn
(int)
complex_yn
(int)
hermitian_symmetric_yn
(int)
str_orth_seqs
(text)
seqs_of_prim_Ktypes
(text)
res_matrix
(text)
wcc_data
id
(text) (PK)
cw_idx
(text)
class_rep
(text)
length
(int)
admissible_diagrams
(text)
reflection_word_length
(int)
class_size
(int)
elt_order
(int)
characteristic_poly_coeffs
(text)